

Software Fax and Data Intercept/Relay System Specification

MESi
10909 Lamplighter Lane
Potomac, Maryland 20854
E-mail: sales@mesi.net
Web: www.mesi.net

http://www.mesi.net/�

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

2

Revision History

Revision Date Author Comments
1.0 03Jan2001 PBM Original Release
1.1 08Jan2001 MTY T.30 Interface Specification

1.11 09Jan2001 MTY

Incorporate changes from 09 Jan brain drain

1.12 06Feb2001 MTY TEP Mods
1.13 04Mar2001 MTY Theory of Operation and format cleanup
1.2 20Apr2001 CWB Added T.38 info

1.21 26Apr2001 MTY Added theory of operation on data underruns
1.3 04May2001 MTY Added file descriptions, dataflow diagram and explanation of

message flow within the relay
2.0 12Sept2001 CWB Reformatted document to be more in line with a System

Specification and updated based on current product capabilities
2.1 16Nov2001 CWB Updates with additional T.38 info
2.2 03Dec2001 MTY Moved test section to separate document
2.3 04Jan2002 MTY Updates on T.38 spoofing implementation

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

3

TABLE OF CONTENTS

SOFTWARE FAX AND DATA INTERCEPT/RELAY SYSTEM SPECIFICATION 1

1 APPLICABLE DOCUMENTS ... 5

2 BACKGROUND ... 6

2.1 OVERVIEW .. 6

3 PRODUCT PLAN .. 7

3.1 DUMB DEMOD/RE-MOD FAX RELAY ... 7
3.2 HYBRID T.30 FAX RELAY.. 7
3.3 FULL T.30 FAX RELAY .. 8
3.4 TRAIN-THRU DATA RELAY ... 8
3.5 LOCALLY-TRAINED DATA RELAY ... 8

4 SYSTEM DESIGN ... 9

4.1 PROTOCOL LAYER ... 9
4.2 MODEM LAYER ... 9
4.3 NETWORK LAYER .. 9

5 T.30 RELAY/MODEM/NETWORK COMMUNICATIONS PROTOCOL10

5.1 TYPICAL SEQUENCE OF EVENTS ...10
5.2 BUFFER CONTENTS ...11
5.3 EXAMPLE MESSAGE BLOCK ...14
5.4 SYSTEM RESOURCES ..15

5.4.1 Buffers/Buffer Manager ...15
5.4.2 Timers ..16
5.4.3 Events ..16
5.4.4 Sequencer ..16
5.4.5 State Machines ...17
5.4.6 Structures ...17
5.4.7 START_PTRS ...17
5.4.8 SequenceStruct...17
5.4.9 BufStruct ..18
5.4.10 ModemIfStruct ...18

6 T.38 SUPPORT ..20

7 NORMAL OPERATIONS..22

8 SEQUENCER OPERATION ...25

9 BUFFERS ...26

10 HANDLING OF TRANSMIT DATA UNDER-RUNS ...27

11 HANDLING OF NON-STANDARD FACILITIES ...28

12 SPOOFING ..28

13 SOURCE FILES ..29

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

4

14 STATE TRANSITION DIAGRAM ...29

15 APPENDIX I – ACRONYMS AND ABBREVIATIONS ...31

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

5

1 Applicable Documents

The following documents are relevant to this specification.

1. International Telecommunications Union T.30 Amendment 1, Series T: Terminal Equipments and
Protocols for Telematic Services, Procedures for document facsimile transmission in the general
switched telephone network, July 1997.

2. International Telecommunications Union T.38, Series T: Terminals for Telematic Services,
Procedures for real-time Group 3 facsimile communication over IP networks, June 1998.

3. International Telecommunications Union T.4, Series T: Terminal Equipments and Protocols for
Telematic Services, Standardization of Group 3 facsimile terminals for document transmission,
July 1996.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

6

2 Background

2.1 Overview

The Software Fax and Data Intercept/Relay is composed of three separate products; a fax relay, a fax line
monitor and a terminating fax. This integrated product has been demonstrated running on a PC in C
source, in real-time, utilizing a standard soundcard to interface to a telephone hybrid or hookswitch. This
demonstration is an indication of the portability of this product to any platform that supports a C compiler.
Figure 1, below, illustrates the functional capabilities of the fax relay product.

 T.38 I/F

 T.30 Protocol

Modem I/F

 PSTN

V
1
7

V
2
9

V
2
1

 Call
Progress

Codecs + Telco Line Control

 PSTN

 T.30 Protocol

 T.38 I/F

Modem I/F

V
1
7

V
2
9

V
2
1

 Call
Progress

Codecs + Telco Line Control

 Internet
 or
 TCP/IP Network

V
2
7

V
2
7

Figure 1 – MESi Fax and Data Relay Functional Diagram

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

7

3 Product Plan

The Software Fax and Data Intercept/Relay (SFDIR) will ultimately exist as a “black box” with a
Subscriber Line Interface Circuit (SLIC) on one side, and a generic network command/status and data
interface on the other side. As with other MESi software products, the SFDIR shall be build-time
configurable to achieve a multiplicity of functions from the same software base. When specifically
configured, it will be able to emulate an end-to-end dial-up network connection between two subscribers,
providing voice pass-through, and fax and data relay. The design for the fax section will allow ultimately
for a selection between relay and terminating fax modes, and the data section will allow ultimately for a
selection between relay and terminating v.42 modes. In each case, the system operation from end-to-end
shall be transparent to the user.

MESi has traditionally been a General Purpose DSP software vendor, concentrating on Texas Instruments
and Analog Devices DSP 16-bit integer devices. Over the past year the demand for C Source algorithms
and systems specifically tailored for use as a porting source for other processors has risen. Recognizing this
trend, the SFDIR will be developed in C in such a way as to facilitate porting to any 16-bit integer device.
The code is written such that 32-bit integer devices are also supported with bit-exactness. All of MESi’s
existing modem, tone, and signaling products have been developed in this way (i.e. the VSIM simulation),
and the result has been a minimized effort in porting to various DSPs (TI CC5000, C6000, ADI 21xx and
BlackFin, LSI Logic ZSP). The SFDIR will extend this philosophy by initially simulating the complete
system, including the Initiator SFDIR with telephone line impairments simulation, network simulation to
include fixed and variable delay and packet loss, and a Responder SFDIR with line impairments. This
simulation is built to run under the Windows 98 Operating system on a PC. It will be stimulated initially
using digitized fax calls stored as 8 kHz samples. It is important to develop the simulation such that the
components are separable and partition-able so that simulated portions can be selectively replaced with
real-time portions as the system design progresses. The PSTN interface will then be used to confirm
operation over conventional dial-up lines. The network interface will be tested first with a private IP
network, and then over the internet to verify proper operation in the presence of network delays, jitter and
lost packets.

3.1 Dumb Demod/Re-mod Fax Relay

The most direct method to build a fax relay is to implement a “dumb demod/remod” relay. The existing
MESi Fax modem Bundle (GenDet, V.17, V.21, V.27, V.29) implements sufficient signal processing
algorithms to detect and demodulate all signals associated with a complete fax transmission. This form of
relay operates by monitoring the GenDet detector state ID, passing the state ID and time-tag information
across the network, and regenerating the same detected signals on the other side. Demodulated data are
passed through unaltered (HDLC, TCF, and page data), including post-burst garbage bits. The only data
interpretation is for HDLC messaging that contains modulation format and rate information so the high-
speed modems can be properly initialized.

3.2 Hybrid T.30 Fax Relay

The Hybrid T.30 relay interprets the detected HDLC and TCF information, and relays protocol codes and
message content to the other side for regeneration. This method “knows” the T.30 protocol elements, but
simply enhances the detector by validating the HDLC data exchange and stripping out unneeded data (such
as flags and TCF zeros).

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

8

3.3 Full T.30 Fax Relay

The full T.30 fax relay implements a T.30 state machine that interacts locally with the fax machine as if it
were a stand-alone fax. Like the Hybrid relay, the Full T.30 relay passes only the required content data
across the network along with time-tag information

3.4 Train-Thru Data Relay

This mode of operation is required when an ATM interface is utilized for the network transport mechanism.
The SFDIR will be compliant with this method to support fax deliver via ATM.

3.5 Locally-Trained Data Relay

This will be the normal mode of operation for the SFDIR. MESi will comply with the relevant sections of
the referenced ITU recommendations.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

9

4 System Design

The Fax Relay has three major elements and some support functions. The main elements are the T.30
protocol layer, the fax modem suite and the network interface. The design allows for the easy replacement
of the modem and network layers. ATM, TCP/IP or VSAT networks can be used for the fax relay simply
by replacing the network protocol file(s). The modem suite can be replaced with another brand of modems
by writing a modem interface module that supports the new modem suite.

The T.30 protocol layer is at the core of the fax relay. All messages from the modems and the network
layers are processed by the T.30 protocol layer. The major elements communicate by sending messages to
the protocol layer. Four linked lists are used to queue messages. Two linked lists connect the protocol and
the modem layers, and two lists connect the network and protocol layers.

4.1 Protocol Layer

The T.30 protocol layer is a state machine driven by messages from the modem and network layers and
timers. Based on the state and the message, an action routine is called and the state machine can transition
to another state. Timeout timers prevent the relay from hanging in a particular state.

4.2 Modem Layer

The modem layer translates the messages from the protocol and network layers into calls to the modems.
Since fax modems are half duplex, the modems must only take messages from the link list when they are
capable of acting on them or they must return them to the linked list for future processing.

4.3 Network Layer

The network layer is responsible for delivering the messages to the distant relay error free and in sequence
order. For details about fax relay operation over IP networks, see the section on T.38 support.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

10

5 T.30 Relay/Modem/Network Communications Protocol

The protocol layer communicates with the modem software and the network software. All communications
between the T.30 protocol interfaces is done using buffers. To facilitate communications, there are two
buffer queues associated with each interface. For the Modem software, the ToModem and FmModem
queues handle all communications. The network interface is serviced by the ToNetwork and FmNetwork
queues. The queue numbers are defined in BufMgr.h.

Seven standard function calls allow buffers to be passed between interfaces.

1. int *BmrGetBuffer(struct SM_struct *S) - returns the pointer to a buffer or NULL if no buffer
is available. The number of buffers allocated should be sufficient for all normal operations.
Receiving a NULL should be taken as an indication of a memory leak or other severe problem.

2. void BmrReturnBuffer(struct SM_structS *, int *buf) - returns a buffer to the unused pool of

buffers. This must be called when an interface is finished with a buffer.

3. int BmrLinkBuffer(struct SM_struct *S, int QNum, int *buf, int fTail) - places a buffer on a
linked list for use by another interface. There are currently 4 queues defined: ToModem,
FmModem, ToNetwork, and FmNetwork which are indicated by QNum. fTail is TRUE for
normal queuing and places the buffer at the end of the linked list. Making fTail FALSE will insert
the buffer at the top of the linked list ahead of all other buffers queued. This can be useful if a
buffer is taken off a linked list and it is determined for some reason that it can not be processed at
this point in time. The interface can the place the buffer at the top of the linked list again. This
function returns TRUE if successful, FALSE if not.

4. int *BmrUnlinkBuffer(struct SM_struct *S,int QNum) - is called to get a buffer from a queue.

It accepts the QNum as an indication of the list and returns either the address of the buffer or
NULL if there are no buffers on the queue.

5. int BmrWriteOctet(struct SM_struct *S, int index, int data, int *buf) - writes one octet ‘data’

to a buffer ‘buf’ at location ‘index’. If index is larger than the current length of the buffer, the
length is adjusted to the new index. The length is needed for the BmrReadOctet() call to
determine when the end of buffer is reached. . This function returns TRUE if successful, FALSE
if not.

6. int BmrReadOctet(int index, int *buf) - read one octet of data from buffer ‘buf’ at location
‘index’. It return either the octet of data or –1 if unsuccessful. Reading past the end of buffer will
return –1.

7. int BmrForceLen(int *buf, int len) - forces the length of buffer ‘buf’ to length ‘len’. Normally

the length is adjusted automatically using BmrWriteOctet(). If however, a buffer is reused and
needs to be shortened, BmrForceLen() should be called.

5.1 Typical Sequence of Events

A modem process wishing to send a buffer to the T.30 controller informing it that the call is being aborted
would do something similar to the following:

int *pBuf;

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

11

pBuf=BmrGetBuffer(S);
if (pBuf == NULL)
 {
 /* error routine – no buffer available */
 }
/* General Header information */
BmrWriteOctet(OFFSET_BUFFER_TYPE, TYPE_FAX_CONTROL, pBuf);

/* Specific Data for Fax Control Message */
BmrWriteOctet(OFFSET_DATA+0, 1, pBuf);
BmrWriteOctet(OFFSET_DATA+1, REASON_DISTANT_END_HANG_UP, pBuf);

/* now send the buffer */
if(BmrLinkBuffer(S, LL_FM_MODEM, pBuf, TRUE))
 {
 /* error routine, buffer no sent */
 }

Similarily, a process servicing a queue would execute code similar to the example below

int *pBuf, BufType;

if((pBuf=BmrUnlinkBuffer(S,LL_FM_MODEM)) != NULL)
{
 /* buffer is available */
 BufType=BmrReadOctet(OFFSET_BUFFER_TYPE, pBuf);
 Switch (BufType)
 {
 case CED:
 break;
 case CNG:
 break;
 …
 }
 /* now return the buffer to the empty pool */
 BmrReturnBuffer(S, pBuf);
}

5.2 Buffer contents
Each buffer has a common header and then type specific data. The size of the header is currently 3 octets,
but may change in the future. In that light, all software written to access data in the buffers should use a
#define to indicate the start of user data instead of a hard coded number. The time stamp will be provided
by the Buffer Manager at some time in the future. The user need only fill in the Buffer type and the type-
specific data.

Offset Contents
0 Buffer type
1 Timestamp LSB
2 Timestamp MSB
3..N User Data

The table below shows the buffer types and their descriptions.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

12

Buffer
type

Direction
xx Modem

Function

 To Fm
0 X X No signal - optional message that is emitted at 1.0 second intervals on start-up
1 X X CED – 2100 Hz called station tone
2 X X CNG – 1100 Hz calling station tone
3 X X V.21 Flag Detect - optional message that can be sent as soon as the V.21 receiver

detects the starting flags. It is sent thru the network so that flags can be
generated at the distant end without the penalty of network delays.

4 X X V.21 Message
5 X X Start Training/Fax Data Message
6 X X Continue Training/Fax Data
7 X Fax Control
8 X Modem Change
9 X Receiver Configuration

CED Buffer Specific Data
Offset in User Data Contents
0 1=Start CED, 0=Stop CED

CNG Buffer Specific Data
Offset in User Data Contents
0 1=Start CNG, 0=Stop CNG

V.21 Flag Detect
Offset in User Data Contents
 (none)

V.21 Message Specific Data
Offset in User Data Contents
0 Count of leading flags received or to be modulated
1 Number of octets of data in frame (lsb)
2 Number of octets of data in frame (msb)
3 De-bitstuffed first non-flag octet of first frame
4 De-bitstuffed second non-flag octet of first frame
5..M-2 De-bitstuffed octets of first frame
M-1 De-bitstuffed first CRC octet of first frame
M De-bitstuffed last CRC octet of first frame

Start Training/Fax Data Specific Data
Offset in User Data Contents
0 TEP Format

0x00 None
0x17 1700 Hz
0x18 1800 Hz

1 Modulation Type
0x00 V.27 ter fall back 2400 (1200 baud)
0x20 V.29 9600
0x10 V.27 4800 (1600 baud)
0x30 V.29 7200

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

13

0x04 V.17 14400
0x24 V.17 9600
0x14 V.17 12000
0x34 V.17 7200

2 Mode Underrun
0= No ECM Data Send 0’s
1= ECM Data Send Flags 0x7E
2= Training Data Send last rcvd packet

Continuation Training/Fax Data Specific Data
Offset in User Data Contents
0 Sequence number (lsb)
1 Sequence number (msb)
2 Number of octets (lsb)
3 Number of octets (msb)
4..N Training/Fax data

Fax Control Specific Data
Offset in User Data Contents
0 1=Abort Call and Hang Up
1 Reason Code

Mode Change Specific Data
Offset in User Data Contents
0 1=Started Transmitting

2=Stopped Transmitting
3=Detected Carrier
4=Detected Carrier Loss

Receiver Configuration Specific Data
Offset in User Data Contents
0

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

14

 Modulation Type
Values above 0x80 are bit mask vars
0x80 None
0x81 V.21
0x82 CNG
0x84 CED
0x20 OR Mask
0xC0 Auto Detect/Run

Values below are for specific fax modems
0x00 V.27ter 2400
0x20 V.29 9600
0x10 V.27ter 4800
0x30 V.29 7200
0x04 V.17 14400
0x24 V.17 9600
0x14 V.17 12000
0x34 V.17 7200

To enable a specific fax modem, use the value associated with it; e.g. 0x34 for
V.17 7200 bps. Automatic modem startup is automatically selected for fax
modems.

To enable V.21 and CED, with automatic modem startup, set 0x81 | 0x84 | 0xC0.

To enable V.17 and V.21 with CED, CNG and automatic startup, two separate
commands must be issued. The first selects the modem, 0x34 for V.17 7200. The
second one will be 0x81 | 0x 82 | 0x84 | 0x20 | 0xC0. The V.21, CNG, and CED
detectors will be turned on without removing the V.17 detector.

Note that the fax modem must be enabled first, then the other detectors must be
OR’d in to the mask.

1 Mode Underrun
0= No ECM Data Send 0’s
1= ECM Data Send Flags 0x7E
2= Training Data Send last rcvd packet

5.3 Example Message Block

This is a V.21 message sent from the protocol to the modem for modulation. It is a Digital Identification
Signal (DIS). See paragraph 5.3 thru 5.3.6 of T.30 for specifics.

Offset
from start
of buffer

Contents Meaning

0 0x04 Buffer Type = V.21 Message
1 0x10 Time = 0x0510
2 0x05
3 0x25 37 Leading flags before first octet of data
5 0x13 There are 19 octets in the first message (octet 7 to and including octet 25) =

0x0013=19. 6 0x00
7 0xFF Address field of first message (T.30 para 5.3.4)

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

15

8 0xC4 Control field of first message. (T.30 para 5.3.5)
Format = 1100 X000, X=0 for non-final frames, X=1 for final frames

9 0x01 Fax Control Field (T.30 para 5.3.6)
0000 0001 = DIS

10..21 0x?? 96 bits of Fax Information Field specific to DIS message
22 0xAB CRC =0xAB1F of message
23 0x1F

5.4 System Resources
5.4.1 Buffers/Buffer Manager

At the heart of the system is a pool of buffers that the layers use to send (link) messages from one layer to
another. The messages can contain V21 or fax data or command and control information. The size of the
message is limited to the aggregate size of the buffers. Internally, buffers are appended to each other to
give the illusion to the user that there is no limit to the buffer size.
There are nine standard calls to interface to the buffer manager.

1. int *BmrGetBuffer(struct SeqStruct *q) - takes the address of the Sequence structure and
returns the address of a buffer if available or NULL if the buffer pool is empty.

2. void BmrReturnBuffer(struct SeqStruct *q,int *buf) - takes the address of the Sequence

structure and the address of the buffer and places the buffer back into the pool of empty buffers.

3. int BmrLinkBuffer(struct SeqStruct *q,int ListNum,int *buf,int fTail) - takes the address of
the Sequence structure, a list number, the buffer address and a Boolean flag and returns TRUE on
success, FALSE on error. This function queues the buffer to the end of the linked list if the
Boolean fTail is TRUE or the head if it is FALSE. Normally, buffers are added to the tail end of
the linked list, but can be added to the head if the buffer was taken off the list and cannot be
processed at the current time. The second parameter is the linked list number. A number is used
so that an event can be generated when the buffer is queued. Adding a buffer to linked list 2
causes a BufferLinkEvent+2 to be generated and added to the event buffer. All state machines are
checked to see if this event is relevant to them. When a state machine responds to this event, it
can remove the buffer from the linked list. This prevents polling of the queues and allows
notification to all state machines that an event has occurred.

4. int BmrLinkLocalBuffer(struct SeqStruct *q,int **List,int *buf,int fTail) - similar to

BmrLinkBuffer except that it acts on a local linked list and not a numbered one. This allows
modules to save buffers for further processing. An example is when fax data buffers arrive at the
regeneration end. Most likely, the packets arrive well before they are needed since a preceeding
V21 message has caused delay in the start of the data generation. In this case, the buffers are
taken off the FromNetwork linked list and given to the modems ToModem linked list. Since the
modem can not modulate the buffers at this point in time, it temporarily stores them on an internal
linked list.

5. int *BmrUnlinkBuffer(struct SeqStruct *q,int ListNum) - used to get a message from a

numbered linked list. It take the Sequence structure and the linked list number and returns the
address of the buffer or NULL if no buffer exists.

6. int *BmrUnlinkLocalBuffer(struct SeqStruct *q,int **List) - same as BmrUnlinkBuffer except

that it uses a local linked list.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

16

7. struct BufStruct *BmrInit(struct BufStruct *S) - initializes the buffer structure. It takes the
address of the Buffer structure as a parameter and must be called before any buffer calls are made.

8. int BmrWriteOctet(struct SeqStruct *q,int index,int data,int *buf) - used to write octet

aligned data to a buffer that was returned from a BmrGetBuffer() call. It accepts the Sequence
structure, the offset of the data in the buffer, the data and the address of the buffer as parameters
and returns TRUE on success, FALSE on failure. The user does not need to be concerned about
the size of the buffer; it is internally regulated.

9. int BmrReadOctet(int index,int *buf) - used to get data out of a buffer. It accepts the offset of

the data and the address of the buffer. It returns the octet of data on success or –1 on failure.

5.4.2 Timers

There are a finite number of timers available that have a 1 mS granularity. They are driven off the receive
sample counter; thus 8 samples equal 1 mS. The number of timers that can be concurrently active is
limited by the size of the timer array. The total number of timers in the system is limited by the max value
of an int. When a timer expires, the timer number is placed in the event buffer for processing. The timer
numbers should be declared in event.h, since they are actually events. Timers can be started, stopped and
their time remaining checked by any process. The timer function calls are listed below.

1. void StopTimer(struct SeqStruct *q, int TimeNum) - stops the timer TimeNum. If the timer is
still in the stack, it is removed from the array of timers. If the timer has expired and is now an
event in the event buffer, it is removed from the event buffer. This eliminates any race condition.

2. void StartTimer(struct SeqStruct *q, int TimeNum, unsigned int Nomst) - starts a 1 mS timer

for Nomst milliseconds. The timer is placed on the array of active timers.

3. unsigned int ReadTimer(struct SeqStruct *q, int TimeNum) - returns the number of
milliseconds left before TimeNum timer expires. If the timer is not on the array of active timers,
ReadTimer returns 0.

4. void TimerTick(struct SeqStruct *q) - internal function that must be called every timer period

(1 mS). This is the mechanism by which the timers are decremented. TimerTick manages the
timer stack and places the timer number in the event buffer when the timers expire.

5.4.3 Events

Events are simply numbered items that correspond to occurrences in the protocol. When a message is
received, an event of that type is added to the event buffer. Timers expiring also place their timer numbers
in the event buffer. The sequencer reads events out of the event buffer and checks each state machine that
is running to see if there is an entry for an event. If so, the action routine associated with that event and
state machine is called. Events are declared in event.h.

5.4.4 Sequencer

The sequencer is the heart of the system. Associated with each sequencer are event buffers, state machines
and timer stacks.

State Machines are added and removed from the sequencer structure with the following calls.

1. void AddEvent(struct SeqStruct *q, unsigned int Event)
2. void DelEvent(struct SeqStruct *q, unsigned int Event)

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

17

3. void Sequencer(struct START_PTRS *s)
4. int AddStateMachine(struct SeqStruct *q, int StateID, struct ETS *StateTable) - starts a new

state machine for a sequencer. A sequencer can support multiple state machines. If a state
machine is added a second time, the StateTable is updated for the first instance of the state
machine. Only one instance of each StateID can exist in each sequencer.

5. int DelStateMachine(struct SeqStruct *q, int StateID) - removes StateID state machine from
the sequencer.

6. void InitSequencer(struct START_PTRS *) - initializes the sequencer. It must be call before
anything is done with the protocol.

void SeqBufDepEvent(struct SeqStruct *q,int *buf, int Event) - normally events are generated from
timers and the arrival of message buffers. However there are some messages that are dependent on the
information in the buffer. SeqBufDepEvent is an alternate entry point for event processing. It saves the
address of buffer in the sequencer structure and then processes the new event “Event” as if it came from the
event buffer. The state machines can then act on the event and use the data in the buffer. If an action
routine wishes to save the buffer, it should set the buffer pointer to NULL. The sequencer will then not
return the buffer.

5.4.5 State Machines

Each state machine is composed state arrays. Each state array is a snapshot in time of a particular state of
the software. The state array consists of arrays of structures. Each structure contains three elements: 1) an
event number, 2) an action routine, and 3) the next state. The event number of the last entry of each state
must be or’d with LAST_ENTRY, which tells the sequencer that there are no more entries for this state.

5.4.6 Structures

5.4.7 START_PTRS

START_PTRS is the structure that contains pointers to all components of the system. The
TRANSMITTER and RECEIVER_START_PTRS are used by the modems. The ModemIf pointer points
to the modem interface layer structures and the Seq pointer points to the sequencer structure that runs the
protocol layer.

struct START_PTRS {
 TRANSMITTER_START_PTRS;
 RECEIVER_START_PTRS;
 struct ModemIfStruct *ModemIf;
 struct SeqStruct *Seq;
 };

5.4.8 SequenceStruct

The SequenceStruct contains the variables used by the sequencer. These allow the sequencer to track the
events, state machines and timers. The sequencer functions more as part of an operating system than a
protocol.

struct SeqStruct{
 unsigned int MasterTimer;
 unsigned int nTimers:10;
 struct tmr Timer[MAX_TIMERS];
 struct sm StateMachine[MAX_STATE_MACHINE];
 unsigned int Events[MAX_EVENTS]; /* size of 8 bits yields 128 entry max */
 unsigned int EventHead:8;

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

18

 unsigned int EventTail:8; /* size of 10 yields 1024 timers max */
 /* size of 6 yields 64 state machines max */
 int nStateMachines:6;
 int *LastRxSampleHead;
 int ResidualSamples; /* pRxSampleHead contains the address of the RxSampleHead pointer */
 /* This contained &START_PTRS->Rx_sample_block->sample_head */
 int **pRxSampleHead;
 void *pBufMgr;
 struct ProtocolStruct *Protocol;
 unsigned int RealTime;/* the count in mS since the call began */
 int *DepBuffer;
 };

5.4.9 BufStruct

The Bufstruct is used by the buffer manager to track the pool of empty buffers and linked lists.
Both EmptySections and LinkedLists are linked lists. The difference is that a message is composed one or
more buffer sections. Each buffer section is linked together to form a message. The empty sections are
stored in the EmptySections linked list. Once the message is built, they are stored in the LinkedLists array.
This is very similar to the EmptySections linked list, but not identical. Different pointers are used to link
complete message buffers as opposed to buffer sections.

struct BufStruct
 {
 int *(LinkedLists[NLLISTS]);
 int *EmptySections;
 int nSections;
 int buf[NSECTIONS][SIZE_BUFFER];
 };

5.4.10 ModemIfStruct

The ModemIfStruct is unique to the suite of software modems. Variables necessary for the modem
operation should be saved here.

struct ModemIfStruct{
 int OldRxState;
 int OldTxState;
 int *RxBuf; /* point to BufMgr buffer for rcvr */
 int RxRaw;
 int RxByte; /* unpacked data byte */
 int RxCount; /* count of bytes in current frame */
 int RxBitCount;
 int RxOnesCount; /* one's count for bit stuffing */
 int RxOffsetMsg; /* offset in buffer of beginning of messaage */
 int RxFlagCount;
 int *TxBuf; /* pointer to buffer for the transmitter */
 int TxFlagCount;
 int TxState;
 int *TxMsgBuf; /* pointer to buffer containing active msg to tx*/
 int TxFlagReq; /* number of flags that need to be modulated */
 int TxOffsetMsg; /* offset of beginning of message in buffer */
 int TxCount; /* offset from TxOffsetMsg of next octet to tx */

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

19

 int TxFrameSize; /* number of octets in current frame */
 int TxOnesCount; /* bit stuffing count of ones */
 int SeqNr;
 int TxDataType; /* ecm, non-ecm, training */
 };

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

20

6 T.38 Support

The T.38 recommendation provides for real-time group 3 facsimile delivery over IP. This recommendation
permits the use of either TCP or UDP over IP for delivery of the facsimile, which would be any IP network,
including the Internet. This product is compliant with the T.38 recommendation. A block diagram is
shown in Figure 1.

IP Network

T.38 Emitting Gateway

Called G3 Fax

T.38 Receiving Gateway

Calling G3 Fax

T.30 fax
(PSTN) T.38 over IP T.30 fax

(PSTN)

Figure 1 – Facsimile Transmission over IP Networks

The calling fax dials up the emitting gateway via the PSTN. The emitting gateway locally handles the
CNG, CED and TCF tones. It should be noted that TCF is handled locally only when TCP is utilized over
IP. When UDP is utilized over IP, TCF is generated by the called fax. The emitting gateway will indicate
to the receiving gateway the detection of these tone signals in order that it may regenerate them to the
called fax. Normal T.30 procedures previously defined are used for establishment and transfer of the
facsimile information. The receiving gateway dials the called fax and completes the virtual link between
the two fax machines. All communications between the modem layer and the network layer is handled
through buffers as previously described.

Both TCP and UDP over IP are supported for communication between the gateways. Mapping of the T.30
is such that bit order between the PSTN and IP networks is preserved. The following describes the packet
structures for both TCP/IP and UDP/IP.

In the case of TCP/IP, the IP packet consists of the IP header and the IP payload. The IP payload consists
of the TCP header and the TCP payload, which in this case is the IFP packet. The IFP packet is the method
of communication between gateways. The IFP packets contain either TYPE or DATA elements or a T.38
packet. The T.38 packet provides an alert for the receiving gateway indicating a start of message and is
used to assure message alignment. The TYPE element is used to convey an indicator of fax signals,
preamble flags or modulation types, or a T.30 data field. Figure 2 shows the high-level packet structure for
IFP packets over TCP/IP.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

21

IP Header IP Payload

TCP Header TCP Payload = IFP Packet

Figure 2 – High-level IFP packet structure over TCP/IP Networks

In the case of UDP/IP, the IP packet is the same as in the TCP case. The IP payload consists of the UDP
header and the UDP payload. The UDP payload contains the UDPTL header and UDPTL payload, which
in this case is the IFP packet. Figure 3 shows the high-level packet structure for IFP packets over UDP/IP.

IP Header IP Payload

UDP Header UDP Payload

UDPTL Header UDPTL Payload = IFP Packet

Figure 3 – High-level IFP packet structure over UDP/IP Networks

The UDPTL header contains a sequence number for detection of out-of-sequence packets. The UDP/IP
packet also supports message redundancy. If this is selected, the current packet is sent along with the
previous two IFP packets, called secondary packets. These secondary packets are appended to the current
IFP packet in decreasing consecutive order.

The T30_INDICATOR part of the TYPE element contains signal detection information. This is CNG,
CED, V.21 preamble, modulation training for the various modulation schemes, and no signal. The
T30_DATA TYPE indicates what modulation was used to convey the information in the DATA element.
The DATA element contains HDLC data, and the following signal indications; signal end, FCS bad, FCS
good, and Non ECM T.4. Multiple fields within a single IFP DATA element are supported.

The T.38 packet for both TCP/IP and UDP/IP adheres to the ASN.1 protocol as described in Annex A of
ITU Recommendation T.38. This packet is encoded using the BASIC-ALIGNED version of Packed
Encoding Rules (PER) as per ITU Recommendation X.691.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

22

7 Normal Operations

The current fax relay assumes that the phone connections are made externally. The incoming call is
answered and the outgoing call is placed outside of the scope of the relay. A PSTN interface was
developed to provide the ability to test the complete SFDIR product with the PSTN, but it is not intended to
be part of the final product. This may change at sometime in the future, but the PSTN interface is intended
to be provided by the customer.

There is only one flavor of the current relay; it supports two PSTN connections and two virtual network
connections to permit operation on an IP network. Normal operations would have one PSTN connection
and one network connection. A distant relay would contain an identical network and PSTN connection.
Data would be sent over some network from one relay to a distant relay.

The state machine for the each end of the relay waits for CNG tone, CED tone or a DIS message from
either the local PSTN connection or from the network. Once one of these events transpires, the fate of both
ends of the relay is set. One is setup as the initiator and the other as the responder. This is important since
the echoes of the transmitted V21 messages are demodulated by the modems. Since the initiator and the
responder do not send the same messages, the echoes can be distinguished by the message types.

The modem interface layer and the network layer communicate with the protocol layer thru a set of linked
lists. All communications are done with by passing messages buffers to linked lists. There are three linked
lists for each component; 1) linked list from modem, 2) linked list to modem, 3) linked list from network,
4) linked list to network 5) linked list to network protocol translator and 6) linked list from network
translator. The last two linked lists provide a streamlined method to map the MESi native protocol to an
alternate network protocol; e.g. T.38, I366.2, or proprietary VSAT. There is a common pool of buffers that
all of the modules use for communications. A typical sequence of events is described in the table below.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

23

Modem Interface T.30 Protocol Network Network T.30 Protocol Modem Interface
Modem I/F detects CNG
tone, gets a buffer from
the pool of empty buffers,
write CNG_ON message
in the buffer and places
the buffer on the
FROM_MODEM linked
list.

 The T.30
Protocol takes the
buffer off of the
FROM_MODEM
list, reads the
contents,
transitions to the
Wait_Net_Dis
State and places
the buffer to the
TO_NETWORK
linked list.

 Network layer
takes the
buffer off the
linked list,
copies the
contents of
the buffer into
a network
buffer and
sends the
network
buffer on to
its peer. The
network layer
retains the
original
buffer until
the buffer is
acknowledged
by the distant
network.

 The network layer
receives the CNG
message from its
initiating peer
network layer. It
gets a buffer from
the pool of local
buffers, copies the
message into the
buffer and place the
buffer on the

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

24

FROM_NETWORK
linked list. It
acknowledges the
receipt of the
message thru its
network protocol so
the distant end can
return its buffer.

 The protocol
layer takes
the buffer,
examines it,
sees that it is
a CNG
message,
transitions
into the
Wait_Lcl_Dis
state, then
places the
buffer on the
TO_MODEM
linked list.

 The modem
removes the buffer
from the
TO_MODEM list,
commands the
modem to
generate CNG and
returns the buffer
to the pool of
empty buffers.

 The modem
detects CED, gets
a buffer from the
pool of empty
buffers, writes a
CED message in
to buffer and
places the buffer
on the
FROM_MODEM
linked list.

 (and so on)

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

25

8 Sequencer Operation

The sequencer is an event driven state machine with a minor processing exception. Since most of the
events are related to buffers, there is an additional sequencer call that allows the sequencer to be reentrant
and pass the address of a buffer with it. Normally, an event would trigger a state transition and an action
routine would be called. In the case of message coming from the modem, the state machine is called
multiple times.

For example, when a message is placed on the FM_MODEM linked list, a FromModemEvent is placed in
the event buffer of the sequencer. This causes the state machine to take the buffer off the linked list. The
message is examined and found to be a V.21 message containing a “DIS” message. The processing routine
generates a new buffer dependent event “T30LclDisEvent” and stores the address of the buffer in the
sequencer structure. The state machine is invoked again looking for a match for T30LclDisEvent in the
state table. When it finds it, it calls the action routine that can then access the buffer. The action routine
can then use the buffer manager calls to examine the data in the buffer. If an action routine wishes to take
the buffer and save it, it must set the pointer variable “DepBuffer” in the sequencer structure to NULL.
The action routine is then responsible for returning the buffer to the empty pool of buffers when it is
finished with it. After the sequencer finishes with all of the state machines, it checks to see if the variable
DepBuffer is not NULL. If it is not, it returns the buffer to the empty pool. This added complexity allows
the sequencer to easily parse and pass messages that are state dependent.

There is one sequencer for each side of the relay. The sequence can support multiple state machines. The
number of state machines that the sequencer supports is defined at build time to 5 state machines.
Currently two state machines are used by the relays. The first state machine is used for events that occur
never change state. T30BufManState primarily processes buffers in the FromModem and FromNet linked
lists, but it can be used for any event processing that does not require a state change. This provides a
synchronous/non-polled method of processing the buffers. The second state machine is the T.30 protocol
for the relay. It starts out in T30IdleState and is there until a CED, CNG, or DIS event starts the process.
The T.30 states are depicted in the figure below.

State machines can be added with the AddStateMachine call and deleted with the RemoveStateMachine
call. Normally, a state machine is added during processor initialization and never removed.

Timers are also valid events for the sequencer. Timers are in 1 mS increments and can be set to 65.535
seconds for 16 bit implementations. The number of timer concurrently running is a build time define that
is currently 16. Timers are implemented on a stack. Each timer has two numbers associated with it; a
timer (event) number and the expiration time in mS. There is a master timer for each sequencer. The
expiration time of any particular timer is the value of master timer plus the timer value in the stack. Every
millisecond the master timer is decremented by 1 until it reaches 0. When the master timer is 0, the timer
(event) number is added to the event buffer in the sequencer and the timer stack is reevaluated. The value
of the timer with the earliest expiration time is copied into the master timer variable, and all of the timers
on the stack are decremented by that amount. This maintains the correct expiration timer for each timer.
Timers can be started, stopped and check by any of the action routines. When a timer is stopped, the timer
is removed from the timer stack (if it is there) and/or the event is removed from the event buffer (if it is
there). This prevents a timer that just expired from triggering a state machine event in error.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

26

9 Buffers

All communications between layers is done through buffers and linked lists. From the viewpoint of the
user, a buffer is an infinitely long area where data can be written. The user makes a call to BmrGetBuffer
and is returned the address of the buffer. The user can then make calls to BmrWriteOctet and
BmrReadOctet to write and read data in the buffers. The buffer protocol does not allow users to access the
buffers directly; i.e. the pointer to the buffer cannot be treated as a pointer to an array of chars. When the
user finished writing data to the buffer, a call to BmrLinkBuffer is made to send the buffer to another layer.
After a layer is finished with a buffer, a call is made to BmrReturnBuffer that returns the buffer to the pool
of empty buffers. The number of buffers available is a build time define (NSECTIONS) that is currently
set to 370. Each buffer can contain OCTETS_PER_BUFFER (currently 64) octets of data. The number of
buffers required depends mainly on the maximum network delay. Since unacknowledged data must be
stored in the event a retransmission is necessary, the buffer requirements can be computed directly from the
max delay.

Internally, the pool of available buffers is stored in a linked list. When a user desires a buffer, it is taken
from the empty pool. As stated above, each buffer can contain 64 octets of data. When a user attempt to
write the 65th octet of data to the buffer, a new buffer section is removed from the pool of empty buffers
and is linked to the first section. The 65th octet of data of the original buffer is in reality the 1st octet of data
of the second section. All of this is hidden from the user. The user needs to make on call to get a buffer
(BmrGetBuffer), a series of call to write data (BmrWriteOctet) and one call to return the buffer to the pool
(BmrReturnBuffer). The linking, writing of data and returning the sections is done internally.

The user views a buffer as an unlimited resource. In reality, the amount of buffer space available to the
user is one buffer of size NSECTIONS*OCTETS_PER_BUFFER (370*64) octets or NSECTIONS (370)
buffers of size OCTETS_PER_BUFFER (64) octets or any combination in between these extremes.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

27

10 Handling of Transmit Data Under-runs

Once the transmitter starts sending fax data or training data, it is assumed that the modem will be provided
data by the distant end to keep the pipe full. When this does not occur because of delays in the networks,
the modems must gracefully accommodate this situation.

The underrun handling is broken down into 3 possible scenarios: 1) underruns during TCF training data, 2)
underruns during non-ECM fax data, and 3) underruns during ECM fax data. There is some processing
done at both the receiver side and at the transmitter side of the fax relay depending on the mode of
operation.

For TCF training data, no special processing is done at the relay receiver. The symbols are collected until
the threshold is reached and then the packet is delivered to the network. At the transmitter relay, the
symbols are taken out of the packet and sent to the transmit data buffer. If there are no packets available,
the transmitter underruns by transmitting ‘0’ symbols until a packet arrives.

For non-ECM data, fill data (0 bits) can be inserted before the end of line (EOL) sequence. The EOL
sequence is eleven ‘0’ bits followed by one ‘1’ bit. The processing is divided between the receiver and the
transmitter. At the receiving side, the data stream is examined for EOL sequences. If an EOL sequence is
found and there are enough symbols in the packet, the packet is delivered to the network. There is a
threshold set to prevent sending very short packets that contain a few runs and then an EOL. When an EOL
is detected, the symbol that contains the last ‘1’ bit is not put in the data packet. That means that the packet
ends with some portion of the ‘0’ bits that are part of the EOL. At the transmitter side, if there is not a
packet available, the transmitter simply transmits ‘0’ symbols until the data packet is available. The first
symbol of the next packet contains the ‘1’ bit of the EOL and transmission continues normally.

For ECM data, an entire frame of data is contained in a buffer. Since ECM frames are either 64 or 256
octets, with the exception of a short final frame, there will most likely be 1 frame per buffer. Similar to the
non-ECM mode, the receiving relay examines the data stream looking for a flag. When a flag is found and
the number of octets is greater than the threshold, the packet is delivered. The symbol that contains the
final bits of the flag is not transmitted. That symbol will be the first symbol in the next frame. To make
processing easier at the transmitter, the number of bits of the flag that are included in the data packet is
included in the buffer. At the transmitter side, when an underrun occurs, a number flags are transmitted.
The number of flags is equal to the number of bits per symbol. This is so that at the end of this sequence,
the position of the in relation to the symbol alignment is the same.

The following example shows the steps. For this example, we are relaying a V.17 12000 bps, or 5
bits/baud. The final two symbols of a frame contain xxxx0 and 11111 and the first symbol of the next
frame contains 10yyy

, where x and y are don’t care bits. The flag character is split between the frames.
The receiving relay indicates that 6 bits of the flag character are contained in the buffer. If, at the end of
sending the entire buffer, a new buffer is available, it is transmitted. If it is not, the transmitter then
composes 5 flags worth of symbols starting with bit number 7 of the flag bit (6 bits were already
transmitted).

Here are the final symbols, followed by the 5 flags.
Final symbols….inserted flags
xxxx0 11111 10 01111110 01111110 01111110 01111110

011111

The transmitter then breaks the flags into symbols.
Final symbols….inserted flags broken into symbols
xxxx0 11111 10011 11110 01111 11001 11111 00111 11100 11111

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

28

As you can see, after inserting the 5 flags, the position of the flag relative to the symbols is the same. At
this point, one of two things happens. If the new buffer has not arrived, the transmitter sends 5 additional
flags. If the new buffer is ready, it is sent to the modulator. The end result is a number of flags slipped into
the data stream between the frames.

Underrun lasts only 5 flags periods.
Final symbols….inserted flags broken into symbols…………………... new frame begins
xxxx0 11111 10011 11110 01111 11001 11111 00111 11100 11111 10yyy

In T.38, ECM data is transferred in complete or partial frames. In this case, complete frames are
reassembled at the receiver between the network translator linked list and the network linked list so that the
interface to the protocol remains the same.

11 Handling of Non-Standard Facilities
T.30 protocol allows for proprietary, non-standard messaging and protocol using the T.30 NSF, NSS, and
NCS message types. The Fax Relay handles these by trapping on received NSF, NSS, or NCS frames and
over-writing the country code and manufacturers code with a replacement code that is known to be not
recognized – that is, like an unknown manufacturer. The existing frame body content is replaced with all
zeros and the FCS is re-calculated and overwritten. Therefore, the NSF, NSS, or NCS frame is relayed with
the same duration but with different country and manufacturer’s codes and a valid FCS at the end. This
action prevents two fax machines from negotiating a non-standard proprietary session, which the relay can
not support under T.30, and thus proceeds as a normal fax session.

12 Spoofing

Spoofing is required to compensate for delays, jitter and lost packets that are inherent in a public IP
network (i.e., internet). Normal fax machine transmission timeouts are too short for these problems that are
encountered on a public IP network. Spoofing will compensate for these problems transparently to the
connected fax machines to overcome this limitation. Spoofing will be accomplished by transmitting extra
flags for the maximum time allowed when a network response is expected. At the end of the allowed time,
a repeat command (CRP) is issued or the transmission is stopped. Then the relay waits for a new command
to be issued. If a network response is received, it is saved in a collision buffer, pending the retransmission
of the command from the command initiator. When the retransmitted command is received by the relay, it
is discarded and the saved collision response is modulated to the local fax machine. In ECM mode, RNRs
are sent in response to commands until the responder end finishes transmission. Spoofing is accomplished
differently between DIS and DCS. The previously described technique is effective when there is a defined
command and response. Since DIS and DCS are both commands, this technique will not work. To
accomplish spoofing, a dummy TSI message is sent at the end of the timeout period while awaiting the
DCS message. This allows for an additional 3 seconds of delay in the network.

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

29

13 Source Files

The following is a list of the source files and a brief description of the contents.

BitRev.c - performs bit reversal.
g711.c - Mu-Law expansion.
netsim.c – bent pipe network simulator.
sym2bit.c – debug code to convert symbols to bits.
tifgen.c – a collection of routines to take a bit stream and convert it to a .tif formatted file.
bufmgr.c – buffer manager code.
modemif.c – The modem interface routines that link the t30 protocol to the modems.
relay2.c – Variable declarations and high level calls to the relay components.
t30.c – The T.30 state machines arrays and action routines.
sequence.c – The sequencer, state machine arrays, and timer calls.
t4.c – Tiff file generation routines.
ipnet2.c – IP network interface code for MESi native protocol.
t38.c - IP network interface code for T.38 protocol.

14 State Transition Diagram

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

30

W
ai

t
N

et
D

C
S/

D
TC

R
cv

d
Lc

l D
IS

Se
nd

 N
et

 D
IS

W
ai

t
N

et
TC

F

R
cv

 N
et

 D
C

S
Se

nd
 L

cl
 D

C
S

T1
 E

xp
ire

s/
R

cv
 L

cl
 D

C
N

D
is

co
nn

ec
t

Id
le

R
cv

 N
et

 F
ax

 D
at

a
Q

ue
ue

 o
r S

ta
rt

Lc
l F

ax
 D

at
a

W
ai

t
Lc

l
C

FR

W
ai

t
N

et
Fa

x
D

at
a

R
cv

 L
cl

 C
FR

Se
nt

 N
et

 C
FR

W
ai

t
N

et
EO

M
/E

O
P/

M
PS

R
cv

d
Ze

ro
 L

en
gt

h
 F

ax
 D

at
a

Pa
ck

et

R
cv

 L
cl

 D
C

N
Se

nd
 N

et
 D

C
N

 &
 A

bo
rt

W
ai

t
Lc

l
Ac

k
EO

M
/E

O
P

R
cv

 N
et

 E
O

M
/E

O
P

Se
nd

 L
cl

 E
O

M
/E

O
P

W
ai

t
Lc

l
D

C
S/

D
TC

R
cv

d
N

et
 D

IS
Se

nd
 L

cl
 D

IS

W
ai

t
Lc

l
TC

F

R
cv

 L
cl

 D
C

S
Se

nd
 N

et
 D

C
S

R
cv

 L
cl

 C
R

P
Se

nd
 L

cl
 C

rp

T1
 E

xp
ire

s
R

cv
 L

cl
 D

C
N

D
is

co
nn

ec
t

R
cv

 L
cl

 F
ax

 D
at

a,
 B

uf
fe

r O
K

Se
nd

 N
et

 F
ax

 D
at

a

W
ai

t
N

et
C

FR

R
cv

 L
cl

 T
C

F
Se

nd
 N

et
 T

C
F

W
ai

t
Lc

l
Fa

x
D

at
a

R
cv

 N
et

 C
FR

Se
nd

 L
cl

 C
FR

W
ai

t
Lc

l
EO

M
/E

O
P/

M
PS

Lc
l F

ax
 E

nd
s

Se
nd

 N
et

 E
nd

 o
f B

ur
st

W
ai

t
N

et
Ac

k
R

cv
 L

cl
 E

O
M

Se
nd

 N
et

 E
O

M

En
d

R
et

ur
n

 to Id
le

R
cv

 L
cl

 A
C

K
Se

nd
 N

et
 A

C
K

Ti
m

er
 5

 E
xp

ire
s

Se
nd

 D
C

N
 &

 A
bo

rt

N
et

 D
at

a
&

N
o

bu
ffe

r
Se

nd
 D

C
N

 a
nd

 A
bo

rt

R
cv

 N
et

 D
IS

Se
nd

 L
cl

 D
IS

R
cv

 L
cl

 F
ax

 D
at

a,
 N

o
Bu

ffe
r

Se
nd

 L
cl

 D
C

N
 &

 A
bo

rt

R
cv

d
N

et
 A

ck
Se

nd
 L

cl
 A

ck

W
ai

t
Lc

l
D

C
S_

2

R
cv

 N
et

 D
TC

Se
nd

 L
cl

 D
TC

R
cv

 L
cl

 C
R

P
Se

nd
 L

cl
 C

R
P

R
cv

 L
cl

 D
C

S
Se

nd
 N

et
 D

C
S

W
ai

t
N

et
D

C
S

R
cv

 L
cl

 D
TC

Se
nd

 N
et

 D
TC

R
cv

 N
et

 D
C

S
Se

nd
 L

cl
 D

C
S

W
ai

t
N

et
D

IS

R
cv

d
N

et
 D

IS
Se

nd
 L

cl
 D

IS

R
cv

d
N

et
 C

ED
Se

nd
 L

cl
 C

ED

T1
 E

xp
ire

s
Se

nd
 N

et
 A

bo
rt

&
H

an
gu

p

W
ai

t
Lc

l
D

IS

R
cv

 L
cl

 C
ED

Se
nd

 N
et

 C
ED

R
cv

 L
cl

 M
PS

Se
nd

 N
et

 M
PS

T1
 E

xp
ire

s
Se

nd
 N

et
 A

bo
rt

T1
 E

xp
ire

s
Se

nd
 N

et
 D

C
N

 &
 A

bo
rt

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

R
cv

 L
cl

 F
TT

/D
IS

/D
TC

Se
nd

 N
et

 F
TT

/D
IS

/D
TC

R
cv

 N
et

 T
C

F
Se

nd
 L

cl
 T

C
F

R
cv

 N
et

 D
C

S
Se

nd
 L

cl
 D

C
S

R
cv

 N
et

 M
PS

Se
nd

 L
cl

 M
PS

R
cv

 L
cl

 D
IS

Se
nd

 L
cl

 D
IS

Ti
m

er
 5

 E
xp

ire
s

Se
nd

 N
et

 D
C

N
Se

nd
 L

cl
 D

C
N

Ab
or

t

Ti
m

er
 5

 E
xp

ire
s

Se
nd

 N
et

 D
C

N
Se

nd
 L

cl
 D

C
N

Ab
or

t

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

T1
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

T5
 E

xp
ire

s
Se

nd
 D

C
N

 &
 A

bo
rt

R
cv

 N
et

 D
TC

Se
nd

 L
cl

 D
TC

R
cv

d
N

et
 F

TT
/D

IS
/D

TC
Se

nd
 L

cl
 F

TT
/D

IS
/D

TC

W
ai

t
Lc

l
D

cn R
cv

d
Lc

l D
cn

Se
nd

 N
et

D
cnTi

m
er

 5
 E

xp
ire

s
D

o
N

ot
hi

ng

W
ai

t
N

et
D

C
N

R
cv

 N
et

 D
C

N
Se

nd
 L

cl
 D

C
N

Ti
m

er
 5

 E
xp

ire
s

D
o

N
ot

hi
ng

R
es

po
nd

er

In
iti

at
or

MESi Proprietary

MESi Confidential and Proprietary – This document contains confidential and proprietary information. No

disclosure, reproduction, or use of any part hereof may be made except by express written permission of
MESi. Copyright © 2001 by MESi. All rights reserved.

31

15 Appendix I – Acronyms and Abbreviations

ATM Asynchronous Transfer Mode
CED Called Terminal Identification
CFR Confirm to Receive
CI Calling Indicator
CNG Calling Tone
Demod Demodulator
DIS Digital Identification Signal
DSP Digital Signal Processor
ECM Error Correction Mode
EOM End of Message
FCF Facsimile Control Field
FCS Frame Check Sequence
FTT Failure To Train
HDLC High-Level Data Link Control
ITU International Telecommunications Union
IFP Internet Facsimile Protocol
IP Internet Protocol
LSB Least Significant Bit
mS milliseconds
MSB Most Significant Bit
PPS Partial Page Separator
PSTN Public Switched Telephone Network
Re-mod Re-modulator
RNR Receive Not Ready
SLIC Subscriber Line Interface Circuit
TCF Training Check
TCP Transmission Control Protocol
UDP User Datagram Protocol
VSAT Very Small Aperture Terminal

	1 Applicable Documents
	2 Background
	2.1 Overview

	3 Product Plan
	3.1 Dumb Demod/Re-mod Fax Relay
	3.2 Hybrid T.30 Fax Relay
	3.3 Full T.30 Fax Relay
	3.4 Train-Thru Data Relay
	3.5 Locally-Trained Data Relay

	4 System Design
	4.1 Protocol Layer
	4.2 Modem Layer
	4.3 Network Layer

	5 T.30 Relay/Modem/Network Communications Protocol
	5.1 Typical Sequence of Events
	5.2 Buffer contents
	5.3 Example Message Block
	5.4 System Resources
	5.4.1 Buffers/Buffer Manager
	5.4.2 Timers
	5.4.3 Events
	5.4.4 Sequencer
	5.4.5 State Machines
	5.4.6 Structures
	5.4.7 START_PTRS
	5.4.8 SequenceStruct
	5.4.9 BufStruct
	5.4.10 ModemIfStruct

	6 T.38 Support
	7 Normal Operations
	8 Sequencer Operation
	9 Buffers
	10 Handling of Transmit Data Under-runs
	11 Handling of Non-Standard Facilities
	12 Spoofing
	13 Source Files
	14 State Transition Diagram
	15 Appendix I – Acronyms and Abbreviations

