

Low Rate Data Modem (LRDM) System Product User Manual

Miller Engineering Services, Inc.
E-mail: sales@mesi.net
Web: http://www.mesi.net

mailto:sales@mesi.net
http://www.mesi.net/

1 INTRODUCTION..3
2 GETTING STARTED ...3

2.1 PRE-BUILT EXECUTABLE..3
2.2 BUILDING LRDM...4

3 CONFIGURATIONS...4

3.1 SAMPLE PROCESSING..4
3.1.1 Sample by Sample ..4
3.1.2 Block Processing Samples..5

3.2 MULTIPLE CHANNEL LRDM ...5
3.2.1 Single Channel..5
3.2.2 Multi Channel..6

4 DATA FLOW, BUFFERS AND POINTERS ..7

4.1 TRANSMITTER ...7
4.2 RECEIVERS ...10

5 LRDM COMPONENTS ..13

5.1 AT COMMAND HANDLER ...13
5.1.1 Command Mode...13
5.1.2 Online Mode ...13

5.2 COMMAND HANDLER ...14
5.3 RESPONSE HANDLER...20
5.4 SUPPRESSING ACK RESPONSES..24
5.5 SEQUENCER ...24
5.6 USER FUNCTION ..26
5.7 DATA HANDLER ..27
5.8 MODEMS ..27
5.9 UART...27

6 BUILDING BLOCKS ..29

6.1 LRDM_PTRS ..29
6.2 RX BLOCK...30
6.3 TX BLOCK...30
6.4 DH BLOCK ...30
6.5 UART BLOCK..33
6.6 AT BLOCK..33
6.7 USER BLOCK...34

LRDM Product Manual 11/7/2003

3

6.8 SEQUENCER BLOCK..34
6.9 COMMAND BLOCK ..36
6.10 RESPONSE BLOCK ...37

7 ACCESSING LRDM MEMORY..37

7.1 CIRCULAR BUFFERS..38
7.2 EXAMPLE CODE..38

8 SYMBOL DEFINITIONS (#DEFINES) ..40

8.1 LRDM SYSTEM DEFINES..40
8.2 DATA PUMP DEFINES...42

1 Introduction
Low Rate Data Modem (LRDM) ties the MESi data pump components
into a fully functional data modem. The suite is composed of the data
pumps, AT command and response handlers, data handlers (V.42 or
V.14), a sequencer and a hook for user functions.

The system is highly configurable and unneeded components can be
conditionally removed with pound-defines at build time to save space and
mips. The system supports multiple instances (channels) of modems and
can be configured to operate on a sample by sample basis or collect a
number of samples and then bulk process them.

2 Getting Started

2.1 Pre-built executable
The easiest way to get started with LRDM is to load and run the
LRDMdemo.out file provided with the delivery. Connect the UART to
the comm port on your pc and run your favorite terminal emulator
program. Configure the terminal program for 115,200 baud, 8 data bits, 1
stop bit and no parity (8N1). Connect the Telco RJ-11 jack to a phone
jack. Call the LRDM platform from another modem and the LRDM
system will answer the phone. On the terminal emulator, you will see a
'Connect' message when the modem handshake is finished. That's it!

LRDM Product Manual 11/7/2003

4

2.2 Building LRDM
To build the LRDM system, change directories to the LRDMdemo for the
particular target you are using. For example, if you are build at Texas
Instruments C54x, the directory would be
\Mesi\products\systems\LRDM\c5400\LRDMdemo.

From the command line type:

make –DTARGET
where:

TARGET is the name of the target board. You have built a single
channel LRDM system. This is the same LRDMdemo.out
executable that ships in with your system.

3 Configurations

3.1 Sample Processing
As the codec samples become available in the Interrupt Service Routine
(ISR), they can be processed in the ISR or simply stored in the LRDM's
sample buffer memory for processing later. The selection of sample
processing is done with the #define NUM_SAMPLES. Setting
NUM_SAMPLES=1 selects sample by sample processing. Setting
NUM_SAMPLES to any number other than one set the block size for
processing. Setting NUM_SAMPLES also effects the size of the receive
and transmit sample buffers.

3.1.1 Sample by Sample

A system that requires the minimum latency would allow processing in the
ISR. The coded ISR in LRDM.c has calls to transmitter() and receiver()
that generate and process one sample respectively. If for example, the
sample rate is 8,000 samples/sec, then when the sample ISR is executed,

LRDM Product Manual 11/7/2003

5

one receive sample will be process and one transmit sample will be
generated by the modem.

This does not affect the data handlers, sequencers and other modules; it
only has function calls that effect sample processing. All other functions
are done in the SYS_executive loop.

Depending on the target system, this may inhibit processing of other
interrupts. A timing analysis needs to be done if the are other time critical
processes running on the user’s system.

3.1.2 Block Processing Samples

A more common approach is to allow the ISR to collect a number of
samples and then allow the system to process them as a block. This lends
itself easily to platforms that have operating systems. If run without an
operating system in a stand alone system such as lrdmdemo, the receiver
and transmitter functions wait until there are NUM_SAMPLES samples
available before doing any processing. If used with an operating system,
the OS would collect the samples and then
call the SYS_executive to process the samples.

3.2 Multiple Channel LRDM
LRDM can support one or multiple channels. Many of the DSP/EZKit
demos are built under the single channel LRDM model. When stereo
codecs are available, a special two channel version is available that takes
advantage of this. This is primarily ISR support for the codec. The
#define NUM_CHANNELS dictates the number of channels.

3.2.1 Single Channel
To build a single channel LRDM system, set NUM_CHANNELS to 1 in
the LRDM.opt file and rebuild.

LRDM Product Manual 11/7/2003

6

3.2.2 Multi Channel
To build a multi channel LRDM system, set NUM_CHANNELS to the
desired number of channels in the LRDM.opt file and rebuild. The
operation of a multi channel LRDM system is very similar to a single
channel system with one exception. The command and response handlers
are active for channel 0 only. Even though commands and responses for
the remaining channels are used, there is only one central
command/response handler which acts as the central clearing house for
command processing.

LRDM Product Manual 11/7/2003

7

4 Data Flow, Buffers and Pointers
The flow of samples, symbols, bits and bytes through the modems are
logical, but sometimes overwhelming and confusion to the first time user.
A brief explanation of the structure is given, followed by a graphical view
of the pointers.

4.1 Transmitter
The transmitter is responsible for taking data from the user and producing
samples that are modulated on the line.

There are two possible sources of data for the modulator. If the AT
handler is used, the data comes from the AT command handler via the
UART. The AT command handler produces an internal transmit
command that is used by the command handler. The alternate method is
to place the data directly into the Tx_DTE[] buffer. The Tx_DTE buffer
where the transmit octets are stored is contained in the Data Handler (DH)
block (see DH Block below). The following pointers are used to keep
track of the data.

• Tx_DTE_head is the address of the pointer where the next octet will
be written

• Tx_DTE_tail is the address of the pointer from which the next octet
will be read

• Tx_DTE_base is the address of the pointer that points to the
beginning of the buffer

• Tx_DTE_len is the address of an integer that contains the buffer
length

Note that the head, tail and base are pointers to pointers.

Once the octets are received from the user, the next step is to frame them
into symbols for the modulator. The framer is typically a V.14 (async-to-
sync) or V.42 (HDLC) framer, although any custom framer can be
implemented. In short, octets (bytes) are taken out of the DTE buffer,

LRDM Product Manual 11/7/2003

8

turned into symbols which are written to the DCE buffer for the
modulator. Again, the pointers are contained in the DH block.

• Tx_DCE_head is the address of the pointer where the next symbol
will be written

• Tx_DCE_tail is the address of the pointer from which the next
symbol will be read

• Tx_DCE_base is the address of the pointer that points to the
beginning of the buffer

• Tx_DCE_len is the address of an integer that contains the buffer
length

Note that the head, tail and base are pointers to pointers.

Finally, the modulator V.32, V.22, Bell 103, etc, takes the symbols out of
the DCE buffer, modulates them and places the output sample in the
transmit buffer. The function of the modulator is to convert the digital bits
into an analog signal suitable for transmission over the phone line. The
sample pointers are contained in the TX_BLOCK and start_ptrs blocks.
The transmit block contains

• sample_head is the address where the next sample will be written
• sample_tail is the address the next sample to be sent to the DAC
• sample_len is the length of the sample buffer

and the start_ptrs structure contains

• Tx_sample_start is the address of the beginning of the sample buffer

LRDM Product Manual 11/7/2003

9

...
UART_block_start
Tx_block_start
Tx_data_start
DH_block_start
Tx_sample_start

...
LRDM_PTRS

...
sample_len
sample_tail
sample_head
data_len
data_tail
data_head

...
TX_BLOCK

...
Tx_DTE_head
Tx_DTE_tail
Tx_DTE_base
Tx_DCE_len
Tx_DCE_len
Tx_DCE_base
Tx_DCE_tail
Tx_DCE_head

...
DH_BLOCK

...
Tx_UART_len
Tx_UART_base
Tx_UART_tail
Tx_UART_head

...
UART_BLOCK

Tx_sample

Tx_data

Tx_UART

Transmit Data
Pumps

O
utput Sam

ple

from
 M

odulator
Sample To DAC

Symbol T
o M

odulator

Transmit Data
Handler

Tr
an

sm
it

Da
ta

fro
m

 U
se

r

Data to Data Handler

OutputSymbols fromData Handler

LRDM Product Manual 11/7/2003

10

4.2 Receivers
The receiver is responsible for taking samples from the line and producing
data; symbols or digits.

The demodulator V.32, V.22, Bell 103, etc, takes the samples out of the
sample buffers and convert them into symbols

• sample_head is the address where the next sample will be written by
the ADC

• sample_tail is the address the next sample to be processed by the
demodulator

• sample_len is the length of the sample buffer

As symbols are generated by the demodulator, they are placed into the
DCE buffer.

• Rx_DCE_head is the address of the pointer where the next symbol
will be written

• Rx_DCE_tail is the address of the pointer from which the next
symbol will be read

• Rx_DCE_base is the address of the pointer that points to the
beginning of the buffer

• Rx_DCE_len is the address of an integer that contains the buffer
length

Note that the head, tail and base are pointers to pointers.

Next, some type of framer then takes the symbols and frames them into
octets. The framer is typically a V.14 (async to sync) or V.42 (HDLC)
framer, although any custom framer can be implemented. Again, the
pointers are contained in the DH block.

• Rx_DTE_head is the address of the pointer where the next octet will
be written

• Rx_DTE_tail is the address of the pointer from which the next octet
will be read

LRDM Product Manual 11/7/2003

11

• Rx_DTE_base is the address of the pointer that points to the
beginning of the buffer

• Rx_DTE_len is the address of an integer that contains the buffer
length

Note that the head, tail and base are pointers to pointers.

Finally, the data is delivered to the user. If the AT handler is running, it
collect the data from the DTE buffer and sends a response message to the
user. If the AT handler is not being used, the user directly reads the
Rx_DTE_head and Rx_DTE_tail pointers. When they are not equal, data
is available. The user reads the data from the Rx_DTE_tail and
increments the Rx_DTE_tail pointer.

LRDM Product Manual 11/7/2003

12

...
UART_block_start
Rx_block_start
Rx_data_start
DH_block_start
Rx_sample_start

...
LRDM_PTRS

...
sample_len
sample_head
sample_tail
data_len
data_head
data_tail
...

RX_BLOCK

...
Rx_DTE_tail
Rx_DTE_head
Rx_DTE_base
Rx_DTE_len
Rx_DCE_len
Rx_DCE_base
Rx_DCE_head
Rx_DCE_tail

...
DH_BLOCK

...
Rx_UART_len
Rx_UART_base
Rx_UART_head
Rx_UART_tail

...
UART_BLOCK

Rx_sample

Rx_data

Rx_uart

Receive Data
Pumps

Input sam
ples to

Dem
odulator

Sample from ADC

Symbols fro
m

Demodulator

Receive Data
Handler

Rec
eiv

e D
ata

 to
 U

se
r Data from Data

Handler

Symbols toData Handler

LRDM Product Manual 11/7/2003

13

5 LRDM Components
LRDM is a collection of building blocks that allows rapid prototyping of
systems. The files lrdm.c and LRDMdemo.c tie these building blocks
together and are intended to be used as templates for users to build
systems. LRDM is highly configurable and is driven by an options file.
The options file contains a series of define statements. The corresponding
#ifdef's in the source code effect the build and system operation.

5.1 AT Command Handler
The AT command handler interfaces with the UART and processes AT
commands from the user and issues AT responses. The AT handler has
two modes of operation: command and online. Note: The UART must
be enabled to use the AT handler.

5.1.1 Command Mode
In the command mode, the Rx AT handler takes data from the UART’s
Rx_UARTT[] buffer and interprets the data as AT commands. When a
legal AT command is found, an internal LRDM command is generated
and placed in the Command Handler buffer. As responses are generated
by the Response Handler, they are placed in the Response Buffer. The AT
handler extracts the response from the Response Buffer, generates a plain
text response message and places that message in the Tx_UART[] buffer.

5.1.2 Online Mode
In online mode, the AT handler monitors the Rx_UART[] data buffer for
the presence of the command escape sequence, normally three plus
characters "+++" within a short period of time. If this sequence is found,
then the AT handler switches back to Command Mode, otherwise the data
is moved from the Rx_UART[] buffer to the Tx_DTE[] buffer. While in

LRDM Product Manual 11/7/2003

14

Online Mode, data in Rx_DTE[] buffer is moved to the Tx_UART[]
buffer.

5.2 Command Handler
The Command Handler monitors the command buffer for commands to
execute. The commands can come from one of two sources. If the AT
Handler is enabled, then the AT handler generates commands and places
them in the command buffer. If the AT Handler is disabled, then the user
can place commands directly into the command buffer. This is normally
done by the use of dual ported memory or a host peripheral interface that
allows visibility into the DSP memory. When the Command Handler
detects a valid command, it interacts with the sequencer, response handler
and data handlers to affect the command.

The counterpart of the command handler is the response handler. It
responds to the commands issued. To selectively disable responses, see
Response Handler and Suppressing ACK Responses sections below.

Communication between the HOST and DSP is via the HPI port of the
DSP. The DSP will allocate two internal structures for this purpose, one
for receiving commands from the HOST, and one for transmitting
responses and data to the HOST. Each of these structures will contain a
circular buffer used to hold the commands or responses. The structures
also contain pointers to the head and tail positions of the buffers. In this
discussion the head is the position in the buffer where the next write will
occur, and the tail is the position where the next read will occur. It is the
responsibility of the process performing the read from or the write to
circularly modify and update the appropriate pointer. See Modifying
Internal Buffers below. The following 7 rules define the command
structure.

1. Commands to the DSP shall be formatted as a sequential array of
bytes. The contents of the bytes are:

Offset Contents

LRDM Product Manual 11/7/2003

15

0 COMMAND_ID
1 CHANNEL_ID
2 PARAMETER_COUNT
3..N COMMAND_PARAMETERS

2. Commands are placed into the DSPs command buffer by the HOST.

The HOST is responsible for checking the command buffer head and
tail pointers to determine if there is enough room in the buffer for the
command.

3. The DSP polls the head and tail pointers to determine if a command

is present in the buffer. If a command is present the DSP retrieves
the command, modifies the tail pointer, and attempts to execute the
command. If the command executes successfully, the DSP responds
to the HOST with an acknowledgment response consisting of the
COMMAND_ID and CHANNEL_ID associated with the command,
and a PARAMETER_COUNT of zero. See Suppressing ACK
Responses below to disable this feature. If the DSP cannot execute
the command, it responds with a "negative acknowledge" (NACK)
response. (See DSP to HOST Communication.) In this case the
COMMAND_ID is logically OR'd with 0x0080 before being placed
in the response buffer. The CHANNEL_ID and
PARAMETER_COUNT for a NACK are as before, in the
acknowledgment response.

NOTE: It is the responsibility of the HOST to ensure commands and
their parameters are valid before writing them to the HPI interface.
The DSP does not perform exhaustive validation of command
parameters.

4. The NACK command response may be returned due to an internal
buffer full condition in the DSP, even though there is room in the
command buffer. A command (and all its parameters) that is
NACK'd is always discarded by the DSP. For example, if the HOST

LRDM Product Manual 11/7/2003

16

attempts to send transmission data to the DSP
(CMD_TRANSMIT_DATA) and the internal transmit data buffer is
full, the command will be NACK'd. It is the responsibility of the
HOST to monitor the ACK/NACK command responses and to re-
issue commands as necessary. In this example, the HOST should re-
issue the CMD_TRANSMIT_DATA command until it is ACK'd, or
the HOST process times out. When enough data has been
transmitted to free up room in the internal transmit data buffer and
the CMD_TRANSMIT_DATA is received by the DSP, the
command will be ACK'd.

5. The command structure is located at a base of 0x1000 in DSP

memory (as specified in the linker command file). The command
structure is specified in command.h. The HOST access to the
command structure and the associated command buffer should be as
follows. Note that the command buffer is circular, and the pointer
modifications must be performed accordingly. All accesses are made
though the HPI interface to the DSP.

a. Read the head pointer from base+1
b. Read the tail pointer from base+2
c. Read the buffer start address from base+3
d. Read the buffer length from base+4
e. Determine the room available in the buffer
f. room = buffer tail - buffer head
g. if room<=0, room += buffer length
h. room = room - 1

If there is enough room for the command and its parameters, the
command may be written to the command buffer. Do not write
partial commands. The command write is as follows. Note that for
the C54x devices the pointers are 16-bit values.

i. Write the COMMAND_ID to the buffer head

LRDM Product Manual 11/7/2003

17

j. Circularly increment the head pointer. Note that the macro
CIRC_INCREMENT found in vmodem.h may be used for this
purpose. The circular increment procedure is as follows:

k. head_pointer+=1
l. if (head_pointer>=start+length) head_pointer-=length
m. else if (head_pointer < start) head_pointer-=length
n. Write the CHANNEL_ID to the (new) buffer head
o. Circularly increment the head pointer
p. Write the PARAMETER_COUNT to the (new) buffer head
q. Circularly increment the head pointer
r. For PARAMETER_COUNT number of

COMMAND_PARAMETERS
i. Write the COMMAND_PARAMETER to the (new)

buffer head
ii. Circularly increment the head pointer

s. Write the new value of the head pointer to base+1

6. Valid CHANNEL_ID's are 0 to 127.

7. Valid COMMAND_ID's and their associated
PARAMETER_COUNT's are shown in the table below.

Command
Description
(see command.h)

Param_
Count

Parameter
Range

Comment

CMD_SOFT_RES
ET

0 -

CMD_TRANSMIT
_DATA

1 to N 0x00 to
0xff

N bytes data
limited only by
the size of the
command
buffer, cmd[].

CMD_AUTOANS
WER_CONNECT

1 0 to 7 See note below

CMD_DTMF_CAL 0-21 none or

LRDM Product Manual 11/7/2003

18

L_CONNECT 0x00 to
0x0f

CMD_ECHO_MO
DE

1 0x00 or
0x01

CMD_HANG_UP 0 -
CMD_ERROR_CO
NTROL_MODE

1 DH_V14_
ASYNC_
MODE,
DH_SYNC
HRONOU
S_MODE,
DH_V42_
MODE

These
parameters are
defined in
dh.h, and need
to be verified.

CMD_MODEM_R
ATE

1 300, 1200,
2400,
4800,
7200,
9600,
12000,
14400

CMD_RETURN_O
NLINE

0 -

CMD_RESULT_C
ODES_MODE

0 -

CMD_VERBAL_
MODE

0 -

CMD_BELLCORE
_MODE

1 0 or 1 Selects
between ITU
V.22 and
Bell212a
modem
standards for
rate=1200
bits/sec., and

LRDM Product Manual 11/7/2003

19

between ITU
V.21 and
Bell103
modem
standard for
rate=300
bits/sec.
n=0 » enable
ITU (v.22 and
v.21) modem
mode
n=1 » enable
Bellcore
(Bell212a and
Bell103)
modem mode

CMD_SELECT_C
OMPANDING

1 0 = 16-bit
linear
(default)
1 = 8-bit
A-law
2 = 8-bit
Mu-law

Selects the
companding
for all
channels

CMD_SELECT_DI
GIT_DETECTOR

1 0 = none
(default)
1 = DTMF
2 = MFC
R1
3 = MFC
R2
Forward
4 = MFC
R2
Backward

Selects the
detector type
for each
channel

LRDM Product Manual 11/7/2003

20

Note: CMD_AUTOANSWER_CONNECT operation - If
autoanswer is currently enabled, an ATA command with a parameter
of 0 will disable autoanswer. If autoanswer is currently disabled, an
ATA command with a parameter of zero will cause the modem to
immediately go off hook and attempt to connect. Autoanswer
remains disabled. An ATA command with a non-zero parameter sets
the number of rings before going off hook in answer mode and
enables autoanswer.

5.3 Response Handler
The Response Handler is the counterpart to the command handler. The
response handler generates response messages based on transitions of
modem state or external events and places responses in the response
buffer. As with the command handler, the behavior is dependent on the
existence of the AT Handler. If the AT handler is present, it will extract
the response from the response buffer, translate it to an AT response and
place the response in the Tx UART buffer. If the AT Handler is disabled,
it is up to the user to process the responses.

1. The DSP shall use the following format for each response or data
packet passed to the HOST. Each item below represents one
(sequential) word in the response buffer.

i. RESPONSE_ID
ii. CHANNEL_ID

iii. PARAMETER_COUNT
iv. RESPONSE_PARAMETERS

2. The RESPONSE_ID is one of the values defined in table ?. The

CHANNEL_ID identifies the channel (time slot) associated with the
response. Valid CHANNEL_ID's are 0, 1,…, N-1 for N channels.
The PARAMETER_COUNT specifies the number of
RESPONSE_PARAMETERS associated with this response, as
identified in table ?.

LRDM Product Manual 11/7/2003

21

3. There are two types of responses: command responses and
unsolicited responses. Command responses echo the
COMMAND_ID and CHANNEL_ID received as a command
packet, and have a PARAMETER_COUNT of zero. In addition, the
COMMAND_ID is logically OR'd with 0x0080 to form a NACK
(not acknowledged) RESPONSE_ID to identify commands that have
not been accepted.

4. Responses are placed in the response buffer by the DSP. The DSP
shall set the HPI interrupt when responses are buffered for the
HOST. Note that the HOST is responsible for clearing this interrupt
when it processes the responses.

5. The response structure is located at a base of 0x1040 in DSP
memory (as specified in the linker command file). The response
structure is specified in response.h. The HOST access to the
response structure and the associated reponse buffer should be as
follows. Note that the response buffer is circular, and the pointer
modifications must be performed accordingly. All accesses are made
though the HPI interface to the DSP.

i. Read the head pointer from base+1

ii. Read the tail pointer from base+2
iii. Read the buffer start address from base+3
iv. Read the buffer length from base+4
v. Determine the number of words present in the buffer

words=buffer head-buffer tail;
if(words<0) words+=buffer length;

vi. Read the RESPONSE_ID from the buffer tail
vii. Circularly increment the tail pointer

viii. Read the CHANNEL_ID from the (new) buffer tail
ix. Circularly increment the tail pointer
x. Read the PARAMETER_COUNT from the (new) buffer tail

xi. Circularly increment the tail pointer

LRDM Product Manual 11/7/2003

22

xii. For PARAMETER_COUNT number if
RESPONSE_PARAMETERS

1. Read the RESPONSE_PARAMETER from the (new)
buffer tail

2. Circularly increment the tail pointer.
xiii. Write the new value of the tail pointer to base+2
xiv. Clear the HPI interrupt

VALID CHANNEL_ID'S ARE 0 TO 127

VALID RESPONSE_ID'S AND THEIR ASSOCIATED
PARAMETER_COUNT'S ARE SHOWN IN THE TABLE BELOW.

Response
Description

Param_
Count

Paramet
er
Range

Comment

CMD_SOFT_RES
ET

0 - Command
ack/nack

CMD_TRANSMIT
_DATA

0 - Command
ack/nack

CMD_AUTOANS
WER_CONNECT

0 - Command
ack/nack

CMD_DTMF_CAL
L_CONNECT

0 - Command
ack/nack

CMD_ECHO_MO
DE

0 - Command
ack/nack

CMD_HANG_UP 0 - Command
ack/nack

CMD_ERROR_CO
NTROL_MODE

0 - Command
ack/nack

LRDM Product Manual 11/7/2003

23

CMD_MODEM_R
ATE

0 - Command
ack/nack

CMD_RETURN_O
NLINE

0 - Command
ack/nack

CMD_RESULT_C
ODES_MODE

0 - Command
ack/nack

CMD_VERBAL_
MODE

0 - Command
ack/nack

CMD_BELLCORE
_MODE

0 - Command
ack/nack

RSP_RECEIVED_
DATA

1-N 0x0000 to
0x00ff

Unsolicited,
received data to
pass to the
HOST. The
maximum
number of
bytes, N is
limited only by
the size of the
response buffer,
rsp[].

RSP_CONNECTE
D

3 see below Unsolicited,
connect
message

RSP_NO_CARRIE
R

0 Unsolicited, no
carrier message

NOTE: The following parameters are valid for RSP_CONNECTED:
 param 1: (connect rate) 300, 1200, 2400, 4800, 7200, 9600,

12000, 14400
 param 2: (modem type) (see sequence.h for definitions) 0x0001,
0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040
 param3: (error control mode) (see dh.h for definitions) 0x0000,
0x0001, 0x0002, 0x0004, 0x0008

LRDM Product Manual 11/7/2003

24

5.4 Suppressing ACK Responses
To prevent LRDM from acknowledging a command, set the most
significant bit of the command by oring the command with
CMD_SUPPRESS_ACK. This allows selective enabling or suppressing
of responses.

For example,
 CMD_TRANSMIT_DATA | COMMAND_SUPPRESS_ACK

Negative acknowledgement cannot be suppressed as they indicate an error
condition.

5.5 Sequencer
The sequencer controls the initial call establishment and monitors call
progress indications for an orderly call startup.
The sequencer is responsible for interfacing with the DAA, ring detection
and call cleardown. The sequencer monitors the call connection and
provides fail downs to slower modem starndards when the initial
connection cannot be provided. The default fallback algorithm is V.32 to
V.22 to Bell 103.

Sequencer Start Up
The sequencer starts in the idle state

Seq_idle

Seq_idle C

A
Initial state for sequencer. If the
Autoanswer mode bit is set in the
sequencer mode register, the sequencer
transitions to Seq_wait_for_ring.

Seq_wait_for_ring A The sequencer wait for the correct

LRDM Product Manual 11/7/2003

25

number of rings. When the correct
number of rings is detected, the
sequencer clears the CALL_MODE bit in
the mode register, calls thego_off_hook
function and then transitions to the
Seq_wait_for_digit state.

Seq_billing_delay C The sequencer waits for the billing delay
period and then transitions to
Seq_wait_dialtone state.

Seq_wait_dialtone C The sequencer waits for either dialtone
detection or a timeout. If dialtone is not
detected, the sequencer reports No
Dialtone and then transitions to Seq_idle.
If dialtone is detected, or if
WAIT_DIALTONE_DISABLE is
selected in the options file, the sequencer
transitions to Seq_dial_DTMF state.

Seq_dial_DTMF C The sequencer calls the DTMF generator
for each word in the Tx DTE buffer.
Each word in the DTE buffer represents
one digit. When all of the digits have
been dialed (tx->data_head == tx-
>data_tail), the sequencer transitions to
Seq_wait_for_ANS state.

Seq_wait_for_ANS C The sequencer monitors the line for
ringback, busy, reorder and answertone.
If the sequencer times out waiting, it
returns to Seq_idle state, otherwise it set
up the sequencer for a call mode call and
enters the Seq_wait_for_digit state.

Seq_wait_for_digit C
A

Using the sequencer mode bits, the
sequencer calls the appropriate
transmitter and receiver initialization
routines and initializes the V.14 or V.42
data handler. The sequencer transitions

LRDM Product Manual 11/7/2003

26

to Seq_wait_for_carrier state.
Seq_wait_for_carrier The sequencer waits for the receiver to

indicate it is in the message state by
monitoring the MESSAGE_ID bit in the
receiver block. The sequencer transitions
to the Seq_wait_for_data handler state in
the message state or call
Seq_terminate_connection on timeout.

Seq_wait_for_data_handler C
A

The sequencer waits for the data handler
to indicate it is in the connected state by
monitoring the DH_CONNECT_BIT in
the data handler block. The sequencer
transitions to the Seq_track_message
state when connected or calls
Seq_terminate_connection on timeout.

Seq_track_message C
A

The sequencer monitors the state of the
call and calls Seq_terminate_connection
when the call is completed or fails.

Function:
Seq_terminate_connection

 This functions is called when the
sequencer needs to clear down a call and
return to the idle state in an orderly
fashion. The function go_on_hook() is
called to place the hookswitch on hook,
the transmitter is initialized to transmit
silence, the receiver detectors are
initialized, and the data handler is set to
idle. The sequencer state is set to
Seq_idle.

5.6 User Function
The user function is a convenient hook for the user to insert code into the
modem. The supplied user funcion is an empty function called every

LRDM Product Manual 11/7/2003

27

cycle thru the system executive. The user can insert and modify this
function as necessary.

5.7 Data Handler
The data handler process the raw data stream to/from the modems and
frames them according to V.14 or V.42. V.14 provides synchronous to
asynchrounous conversion and V.42 is an HDLC framer. The Data
Handler takes symbols from the Rx_DCE[]buffer, processes them
according to the current data handler mode (V.14, V.42, etc) and places
the output in the Rx_DTE[]buffer. In the transmitting direction, the data
handler takes bytes from the Tx_DTE[]buffer, processes them and places
symbols in the Tx_DCE[]buffer. The data handler must ensure that
enough symbols are available so the transmitter does not underrun and
must remove the symbol from the receiver DCE buffer so the receiver
does not overflow. If both the V.14 and V.42 data handlers are disabled,
the data handler does nothing. It is up to the user to transfer data into and
out of the DTE buffers.

5.8 Modems
The modems are heart of the system. In most cases, interfacing directly to
the modems is not required. The sequencer, command and response
handlers hide most of the details of the system. However, all of the
structures are available for inspection and modification by the user. Refer
to the MESi Modem User's Manual for modem specifics. The modems
take symbols from the Tx_DCE[]buffer and modulate them onto the line
and take demodulate symbols and place them in the Rx_DCE[]buffer.

5.9 UART
The UART is an optional component to the LRDM system. If the UART
and AT Handler are enabled, communication via an RS-232 connection
can be made with the LRDM. Modem data is passed between the UART
and DTE as necessary. If the UART is disabled, the user must talk

LRDM Product Manual 11/7/2003

28

directly with the command and response handlers and must take/remove
the DTE data from the DTE buffers.

LRDM Product Manual 11/7/2003

29

6 Building Blocks

6.1 LRDM_ptrs
The LRDM_PTRS structure is a superset of the modem pointers. These is
the handle needed by most LRDM functions. The structure definition is as
follows:

struct LRDM_PTRS {
 TRANSMITTER_START_PTRS;
 RECEIVER_START_PTRS;
 int *DH_block_start;
 int *UART_block_start;
 int *AT_block_start;
 int *sequencer_block_start;
 int *command_block_start;
 int *response_block_start;
 int *user_block_start;
 };

where:

TRANSMITTER_START_PTRS is the start_ptrs of the transmitter
RECEIVER_START_PTRS is the start_ptrs of the receiver
DH_block_start is the pointer to the data handler block
UART_block_start is the pointer to the UART handler block
AT_block_start is the pointer to the AT handler block
sequencer_block_start is the pointer to the sequencer block
command_block_start is the pointer to the command handler block
response_block_start is the pointer to the response handler block
user_block_start is the pointer to the user block

LRDM Product Manual 11/7/2003

30

6.2 Rx Block
The Rx_block structure contains a list of pointer to the various memory
elements of the low rate data modem. See the MESi Modem User's
Manual for the structure's contents.

6.3 Tx Block
The Tx_block structure contains a list of pointer to the various memory
elements of the low rate data modem. See the MESi Modem User's
Manual for the structure's contents.

6.4 DH Block
struct DH_START_PTRS *start_ptrs;
 int (*Tx_state)(struct DH_BLOCK *);
 int (*Rx_state)(struct DH_BLOCK *);
 int mode;
 int **Tx_DCE_head;
 int **Tx_DCE_tail;
 int *Tx_DCE_len;
 int **Tx_DCE_base;
 int **Rx_DCE_head;
 int **Rx_DCE_tail;
 int *Rx_DCE_len;
 int **Rx_DCE_base;
 int **Tx_DTE_head;
 int **Tx_DTE_tail;
 int *Tx_DTE_len;
 int **Tx_DTE_base;
 int **Rx_DTE_head;
 int **Rx_DTE_tail;
 int *Rx_DTE_len;
 int **Rx_DTE_base

where:

*Tx_state is the action routine of the transmit data handler

LRDM Product Manual 11/7/2003

31

*Rx_state is the action routine of the receive data handler
mode is a bitmap field that has operation specific parameters for the
data handlers. The definition of the bitfields are:

Neumonic ordinal
DH_V14_ASYNC_MODE 0x0000
DH_SYNCHRONOUS_MODE 0x0001
DH_IDLE_MODE 0x0002
DH_V42_MODE 0x0004
DH_V42BIS_MODE 0x0008

DH_V14_SCAN_ENABLE_BIT 0x0100
DH_CALL_MODE 0x0200
DH_LOCAL_DIGITAL_LOOPBACK 0x0400
DH_OFFLINE_BIT 0x0800
DH_CONNECT_BIT 0x1000
V42_FAILDOWN_BIT 0x2000
V42BIS_FAILDOWN_BIT 0x4000

DH_V14_5_DATA_BITS 0X0050
DH_V14_6_DATA_BITS 0X0060
DH_V14_7_DATA_BITS 0X0070

**Tx_DCE_head is the address of a pointer. The pointer contains
the address of the location in the Tx_DCE[]buffer where the next
symbol will be inserted by the data handler.
**Tx_DCE_tail is the address of a pointer. The pointer contains the
address of the location in the Tx_DCE[]buffer where the next
symbol will be read by the modulator.
*Tx_DCE_len is the address of the variable containing the length of
the transmit DCE buffer length.
**Tx_DCE_base is the address of a pointer. The pointer is the
address of the variable that is the location of the beginning of the
transmit DCE buffer.

LRDM Product Manual 11/7/2003

32

**Rx_DCE_head is the address of a pointer. The pointer contains
the address of the location in the Rx_DCE[]buffer where the next
symbol will be inserted by the demodulator.

**Rx_DCE_tail is the address of a pointer. The pointer contains the
address of the location in the Rx_DCE[]buffer where the next
symbol will be read by the receive data handler.
*Rx_DCE_len is the address of the variable containing the length of
the transmit DCE buffer length.
**Rx_DCE_base is the address of a pointer. The pointer is the
address of the variable that is the location of the beginning of the
receive DCE buffer.
**Tx_DTE_head is the address of a pointer. The pointer contains
the address of the location in the Tx_DTE[]buffer where the next
octet will be inserted by the AT handler or user funcion.
**Tx_DTE_tail is the address of a pointer. The pointer contains the
address of the location in the Tx_DTE[]buffer where the next octet
will be removed by the transmit data handler.
*Tx_DTE_len is the address of the variable containing the length of
the transmit DTE buffer length.
**Tx_DTE_base is the address of a pointer. The pointer is the
address of the variable that is the location of the beginning of the
transmit DTE buffer.
**Rx_DTE_head is the address of a pointer. The pointer contains
the address of the location in the Rx_DTE[]buffer where the next
octet will be inserted by the data handler.
**Rx_DTE_tail is the address of a pointer. The pointer contains the
address of the location in the Rx_DTE[]buffer where the next octet
will be removed by the AT handler or user function..
*Rx_DTE_len is the address of the variable containing the length of
the receive DTE buffer length.
**Rx_DTE_base is the address of a pointer. The pointer is the
address of the variable that is the location of the beginning of the
receive DTE buffer.

LRDM Product Manual 11/7/2003

33

6.5 Uart Block

6.6 AT Block
struct AT_BLOCK {
 struct LRDM_PTRS *start_ptrs;
 int (*Tx_state)(struct LRDM_PTRS *);
 int *Tx_UART_ptr;
 int channel;
 int mode;
 int *message_ptr;
 int message_len;
 int (*Rx_state)(struct LRDM_PTRS *);
 int *Rx_data_tail;
 int *Rx_data_head;
 int command;
 int cmd_counter;
 };

where:

start_ptrs is a pointer to the start_ptrs for channel 0
Tx_state is a pointer to the transmit routine for the AT handler
Tx_UART_ptr is a pointer to the transmit UART block
channel is the channel number
mode is the mode bits for the AT handler (see definition below)
message_ptr is
message_len is
Rx_state is
Rx_data_tail points to the tail of the UART??? Rx_data_buffer
Rx_data_head points to the input of the UART???? Rx_data_buffer
Command is
cmd_counter is

LRDM Product Manual 11/7/2003

34

6.7 User Block

6.8 Sequencer Block
struct SEQUENCER_BLOCK {
 int (*state)(struct LRDM_PTRS *)
 int mode;
 int mode2;
 int bit_rate;
 int lineQuality;
 int event_counter;
 int old_event;
 int time_base;
 int time_base_low;
 };

where:

state is a pointer to the sequencer processing routine
mode is described by the table below

Neumonic ordinal
SEQ_B103_MODE_BIT indicates Bell 103 is selected
by the user or by the fallback logic. If enabled, the
appropriate Bell 103 transmitters and receivers are run.

0x0001

SEQ_B202_MODE_BIT indicates Bell 202 is
selected by the user or by the fallback logic. If
enabled, the appropriate Bell 202 transmitters and
receivers are run.

0x0002

SEQ_B212_MODE_BIT indicates Bell 212 is selected
by the user or by the fallback logic. If enabled, the
appropriate Bell 212 transmitters and receivers are run.

0x0004

SEQ_V21_MODE_BIT indicates V.21 is selected by
the user or by the fallback logic. If enabled, the
appropriate V.21 transmitters and receivers are run.

0x0008

SEQ_V22BIS_MODE_BIT indicates V.22bis is
selected by the user or by the fallback logic. If

0x0010

LRDM Product Manual 11/7/2003

35

enabled, the appropriate V.22bis transmitters and
receivers are run.
SEQ_V32BIS_MODE_BIT indicates V.32bis is
selected by the user or by the fallback logic. If
enabled, the appropriate V.32bis transmitters and
receivers are run.

0x0020

SEQ_V34_MODE_BIT indicates V.34 is selected by
the user. If enabled, the appropriate V.34transmitters
and receivers are run.

0x0040

SEQ_BAUDOT_MODE_BIT indicates Baudot is
selected by the user. If enabled, the Baudot
transmitters and receivers are run.

0x0080

SEQ_BELLCORE_MODE_BIT 0x0100
SEQ_SYNCHRONOUS_MODE_BIT 0x0200
SEQ_V14_ASYNC_MODE_BIT is set when V.14
synchronous to asynchronous framing is used.

0x0400

SEQ_V42_MODE_BIT is set when V.42 HDLC
framing is used.

0x0800

(reserved) 0x1000
SEQ_MESSAGE_BIT indicates that the sequencer is
in the message state. The sequencer enter the message
state after the datapump receiver sets the
MESSAGE_ID bit and exits the message state when
Seq_terminate_connection is called; usually in
response to a timeout.

0x2000

SEQ_AUTOANSWER_MODE_BIT is set to force
lrdm to answer an incoming call without user
intervention.

0x4000

SEQ_CALL_MODE_BIT indicates that the sessions
was originated the originator (bit set) or by in response
to answering an incoming call (bit cleared).

0x8000

mode2 is described by the table below
Neumonic ordinal

LRDM Product Manual 11/7/2003

36

SEQ_MODE2_CHANNEL_MASK masks off the
channel number in the mode2 register. Lrdm support
256 channels.

0x00ff

SEQ_MODE2_RING_S0_MASK masks off the
number of rings required before LRDM will answer
the incoming call.

0x0700

reserved 0x0800
SEQ_MODE2_DIGIT_DETECT indicates LRDM
should detect DTMF digits.

0x1000

bit_rate indicates the bit rate in bits per second.
lineQuality indicates the signal quality (currently unused).
event_counter is used to count internal sequencer event.
old_event is used internally to debounce the ring detector.
time_base[_low] implements a 32 bit timer for use by the sequencer.

6.9 Command Block
struct COMMAND_BLOCK {
 int (*state)(struct COMMAND_BLOCK *, struct LRDM_PTRS *);
 CIRC *head;
 CIRC *tail;
 CIRC *start;
 int len;
 CIRC *last_command;
 CIRC command[COMMAND_BUF_LEN];
 };

where:

state is a pointer to the command processing routine
head is a pointer to the input pointer of the command buffer
tail is a pointer to the output pointer of the command buffer
start is a pointer to the beginning of the command buffer
len is the length of the command buffer in bytes

LRDM Product Manual 11/7/2003

37

last_command is a pointer to the last command processed
command is an array of ints used to store the commands

6.10 Response Block
The response buffer is the counterpart to the command buffer. It is used to
transfer data and responses to commands from the LRDM to
the user interface.

struct RESPONSE_BLOCK {
 int (*state)(struct RESPONSE_BLOCK *, struct LRDM_PTRS *);
 CIRC *head;
 CIRC *tail;
 CIRC *start;
 int len;
 int channel;
 CIRC response[RESPONSE_BUF_LEN];
 };

where:
 state is a pointer to the response processing routine
 head is a pointer to the input pointer of the response buffer
 tail is a pointer to the output pointer of the response buffer
 start is a pointer to the beginning of the response buffer
 len is the length of the response buffer in bytes
 channel is the channel id number
 response is an array of ints used to store the responses

7 Accessing LRDM Memory
All of the LRDM memory is available to the user. The structure
definitions are available in the header files as well as the components
manual and this manual. The user can examine any element in the
modem, but should only modify those pointers and data arrays associated
with data flow to and from the user interface.

LRDM Product Manual 11/7/2003

38

7.1 Circular buffers
Depending on the platform and the circular buffer capabilities of the
platform, circular buffers are either on 2N boundaries or implemented in
software. Consequently, the user should always use the
CIRC_INCREMENT macro for circular buffer accessing.

Normally, the user should only be writing data to the Tx DTE buffer, and
reading data from the Rx DTE buffer. If the user is using the command
and response buffers, then access to the Tx and Rx data is done thru the
command and response buffers.

7.2 Example code
To write 10 bytes of data from the array UserMsg to the transmit buffer,
the user would:
 struct DH_BLOCK *d;
 char UserMsg[10];
 int I;
 /* The user needs to populate the array UserMsg and set
 * the pointer d to the address of the DH_BLOCK here
 */
 for(I=0;I<10;++I)
 {
 **d->Tx_DTE_head = UserMsg[i]; /* copy the byte to the buffer
*/
 CIRC_INCREMENT(/* increment the buffer */
 (*d->Tx_DTE_head),
 1,
 (*d->Tx_DTE_base),
 (*d->Tx_DTE_len));
 }

In a similar fashion, the user can read the data out of the receive buffer.
 struct DH_BLOCK *d;

LRDM Product Manual 11/7/2003

39

 char UserMsg[128];
 int I,count;
 /* The user needs to set the pointer d to the address
 * of the DH_BLOCK here.
 */
 count=0; /* set the count to 0 */

 while(*d->Rx_DTE_head != *d->Rx_DTE_tail)
 {
 UserMsg[count] = **d->Rx_DTE_tail; /* copy the byte from the
buffer */
 ++count; /* increment the count
 CIRC_INCREMENT(/* increment the buffer */
 (*d->Rx_DTE_tail),
 1,
 (*d->Rx_DTE_base),
 (*d->Rx_DTE_len));
 }

LRDM Product Manual 11/7/2003

40

8 Symbol Definitions (#Defines)
To give LRDM its configurability, the system external build-time symbol
definitions to override internal #defines. The following list of #defines
may be found in the options files (LRDMdemo.opt). There are two main
groups of defines; those used to control the LRDM build and general
modem defines. At times, the line between system and data pumps blurs,
so all defines are listed.

8.1 LRDM System Defines

AT_DISABLE disables the AT command handler. If this is done, the user
is responsible monitoring the status bits and making the internal systems
calls that are made by the AT handler.

ARROWLRDM_DEMO is defined to build LRDM on the Arrow Dsk
board.

COMMAND_BUF_LEN is the length of the command buffer.

COMMAND_DISABLE This disables the inclusion of the command
handler. Disabling the command handler means the LRDM will not
process commands sent to it. The LRDM will generate response if the
response handler is enabled (see RESPONSE_DISABLE).

COMMAND_NUM_CHANNELS is the number of command channels in
the system.

DHBLOCKNEEDED determines if a DH block is built in memory. It is
driven from V.14 and V.42 frames, but can be invoked for custom framers
when the DH memory is needed and the V.14 and V.42 framers are not
used.

LRDM Product Manual 11/7/2003

41

DH_DISABLE - disables Data Handler code and memory. Used to
eliminate Data Handler from LRDM builds

DH_NUM_CHANNELS is the number of data handler structures in the
system.

LRDM_DEBUG is additional LRDM debugging software.

LRDM_DEMO builds the demo version of LRDM.

LRDM_PTRS_NUM_CHANNELS defines the number of channels of
LRDM in the system.

RESPONSE_BUF_LEN is the size of the response buffer.

RESPONSE_DISABLE disables the response handler. Disabling the
response handler means that the LRDM will not generate responses to
system commands or system events.

RESPONSE_NUM_CHANNELS is the number of response channels in
the system.

SEQUENCER_DISABLE The sequencer control call progress, call
termination and control of hook switch (DAA). Disabling the hookswitch
should only be used when the user has a specific requirement to operate
the modems in a non-standard fashion and is going to provide the
necessary modem startup commands.

SEQUENCER_NUM_CHANNELS is the number of sequencer channels
in the system.

USER_NUM_CHANNELS is the number of user channels in the system.

USER_DISABLE disables the user code. If there is no user specific code,
then the user function can be disabled. In a generic configuration, there is

LRDM Product Manual 11/7/2003

42

no need for the user function. The modem will function normally thru the
AT handler.

8.2 Data Pump defines

OP_POINT_SHIFT - The shift corresponding to the power of two that
OP_POINT is defined to be. For example if OP_POINT is 1/8
 then OP_POINT_SHIFT is three.

ABORTMODS - is a temporary flag for HDLC to test the handling of the
ABORT indication.

ACOUSTIC_ECHO_CANCELLER - enables acoustic echo cancellation
module code segments. Defined in config.h

AD73311 - symbol to select Analog Devices AD73311 audio codec driver
in target.asm

AEC_DEMO - symbol to select configuration profile for acoustic echo
canceller demonstration in config.h. This profile sets the buffer sizes and
code module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

ALAW_COMPANDING - enables compilation of A-Law companding
and expansion code in target.asm. A-Law companding is used for voice
relays as well as fax intercept.

ALL_ASSEMBLY_SAMPLE_ISR - selects all assembly source code for
8 khz. interrupt routine in target.asm. This would be selected when the
standard C source "sample_8khz_isr()" is not used for a sample transfer.

ALL_CSOURCE - symbol to select all C source code build rather than
assembly source code build in makefiles.

LRDM Product Manual 11/7/2003

43

ALT_DTMF - symbol to select configuration profile for the alternate
DTMF detector version in config.h.

ALT_MF - symbol to select configuration profile for the alternate MF
detector version in config.h.

ANALOG_IOMIC_SPKR_ANALOG_IO - enables drivers for
microphone and speaker sample drivers in target.asm. This typically
supports boards with seperate mic/ speaker and phone I/O.

ANALOG_LOOPBACK - ???

APSTUDIO_INVOKED - ???

APSTUDIO_READONLY_SYMBOLS - ???

ARROW5409 - selects the arrow5409 board type in target.asm.

ASSEMBLY_PTRS_INITIALIZATION - ???

ASYNC_RX_TX - ???

ATT_TWIST_SPEC - configures DTMF detection algorithm for
compliance with AT&T performance specification in DTMF.C.

AT_DISABLE - disables the AT command handler. If this is done, the
user is responsible monitoring the status bits and making the internal
systems calls that are made by the AT handler.

AT_NUM_CHANNELS - specifies the number of AT command handler
channels. The default is 1 and can be over- ridden externally.

AUTOBUF_DISABLE - ???

LRDM Product Manual 11/7/2003

44

B42_MAX_CODEWORD - is the maximum code word size that is
transmitted in V.42 bis. This parameter is determined during V.42
negotiations. B42_MAX_CODEWORD is the maximum codeword size
that LRDM will support.
The final codeword size is the maximum size supported by both sides of
the connection. The code word size is a minimum of 512 and is typically
a power of 2. If you specify B42_MAX_CODEWORD larger than 2048,
you can
not define V42BIS_COMPACT.

B42_MAX_STRING - is the size of longest string that can be encoded
into a codeword. This parameter is determined during V.42 negotiations.
B42_MAX_STRING is the maximum string size that LRDM will support.
The final string size is the maximum size supported by both sides of the
connection. The string word size is a minimum of 6.

BAUDOT_DEMO - symbol to select configuration profile for Baudot
TDT modem demonstration in config.h. This profile sets the buffer sizes
and code module enables for the default build, which can each be over-
ridden externally by a command- line symbol definition or from a *.opt
options file.

BAUDOT_ENABLE - ???

BAUDOT_MODEM - ???

BELL103_DISABLE - symbol existence disables code and memory for
BELL103 modem.

BELL_2225_TONE

BPF_FAST_MODE

BRAZIL_PSTN - attenuates Tx->scale1 by 2dB to produce tone twist
required in Brazil.

LRDM Product Manual 11/7/2003

45

C54CM_

C54XFAR

C54XFARC

CADENCE_CP sets cadence call progress. This is the default and is used
in Europe. The counterpart is NORTH_AMERICAN_PSTN.

CALL_MODE is a VSIM define that shows the direction of the call
(CALL or ANSWER).

CALL_PROGRESS

CAPTURE_TXSYMS

CED_TONE

CELLULAR sets the Crystal CS4216 to work thru the MIC/SPKR jacks.

CHANNEL_ECHO_LEN is a channel echo model parameter currently set
to 2 seconds in config.h.

CHARACTER_GENERATOR

CIDDTMF_DEMO - symbol to select configuration profile for DTMF-
based caller ID demonstration in config.h. This profile sets the buffer
sizes and code module enables for the default build, which can each be
over- ridden externally by a command- line symbol definition or from a
*.opt options file.

CIDJAPAN_DEMO- symbol to select configuration profile for Japan
caller ID demonstration in config.h. This profile sets the buffer sizes and
code module enables for the default build, which can each be over- ridden

LRDM Product Manual 11/7/2003

46

externally by a command- line symbol definition or from a *.opt options
file.

CID_DEBUG - changes the length of the caller ID bursts and the initial
transmitter state for faster debugging.

CID_DEMO - symbol to select configuration profile for BELLCORE
/ETSI caller ID demonstration in config.h. This profile sets the buffer
sizes and code module enables for the default build, which can each be
over- ridden externally by a command- line symbol definition or from a
*.opt options file.

CIRC - is a typecast for circular buffers..

CIRCULAR_LOG - is used in V42 to provide a continuous circular log.
The alternative is for a linear log that terminates logging when the end is
reached.

CLEAN_SCREEN

CLIP_DEMO - symbol to select configuration profile for CLIP
combination (BELCORE, DTMF, Japan) demonstration in config.h. This
profile sets the buffer sizes and code module enables for the default build,
which can each be over- ridden externally by a command- line symbol
definition or from a *.opt options file.

CMD_DIGITAL_LOOPBACK

CNG_TONE

COMMON_MODEM

COMPANDING

LRDM Product Manual 11/7/2003

47

COMPILER - is set in config.h to indicate if the compiler is used or if
code is purely assembly code. The default is ENABLED.

CONSTELLATION_DISPLAY- is used in conjunction with VSIM to
save the I and Q constellation points for further processing.

CPTD_DEMO - symbol to select configuration profile for call progress
tone detection (dial tone, ringback, busy) demonstration in config.h. This
profile sets the buffer sizes and code module enables for the default build,
which can each be over- ridden externally by a command- line symbol
definition or from a *.opt options file.

CREATE_VECTORS

DAA_CHANNEL_ASSIGNMENT

DECODER_BLOCK_LEN - is the size of the trellis decoder block and is
set in config.h based on which decoder is implemented.

DECODER_BLOCK_NUM_CHANNELS - is the number of tcm decoder
channels in the system.

DEFAULT_AUTOANSWER - enable automatic answer for incoming
calls

DFTCOEF_IN_PROGRAM_MEMORY

DIGITAL_LB

DIGITAL_LOOPBACK

DISABLED - is a generic define set to 0.

DOS_GRAPHICS - is used in VSIM to link in the Borland graphics
utilities to do DOS screen graphics.

LRDM Product Manual 11/7/2003

48

DSK5402 - defines the target as a TEXAS INSTRUMENTS DSK5402.

DSK5416 - defines the target as a TEXAS INSTRUMENTS DSK5416.

DSK_V22

DSK_V32

DTE_LOOPBACK

DTMF_API_DEBUG

DTMF_DEMO - symbol to select configuration profile for DTMF
generator/ detector demonstration in config.h. This profile sets the buffer
sizes and code module enables for the default build, which can each be
over- ridden externally by a command- line symbol definition or from a
*.opt options file.

DTMF_DETECT

DUMP_BUFFER enables the logging of anything in modem by using
dump_write(). The amount of data logged is dictated by DUMP_LEN.
The dump buffer is a linear array and logging stops when the
DUMP_LEN is reached.

DUMP_LEN is the length of the DUMP_BUFFER.

ECHO_CANCELLER

EC_COEF_LEN is the number of taps in the echo canceller and is set in
config.h.

EC_COEF_NUM_CHANNELS is the number of echo canceller channels
in the system and is defined in config.h.

LRDM Product Manual 11/7/2003

49

ENABLED is a generic define set to '1'.

ENCODER_BLOCK_LEN is the size of the trellis encoder block and is
driven by the selected trellis encoder.

ENCODER_BLOCK_NUM_CHANNELS is the number of encoder
blocks in the symtem and is defined in config.h.

EQ_COEF_LEN is the number of taps in the equalizer and is defined in
config.h.

EQ_COEF_NUM_CHANNELS is the number of equalizer channels in
the system and is defined in config.h.

EQ_PLOT_MODE is used with VSIM graphics to plot either the
equalized signal or the equalizer taps.

EVM541

EVM5510

EXTERNAL_DCE_BUFFERS Normally, the DCE data buffers are
created along with other memory element. As symbols are transferred
to/from the modems, they are placed into and taken from the DCE buffer.
Since the data handler and modems act as an integral unit, there is no need
to have external DCE buffers. As symbols are received by the data
pumps, they are place in the Rx_Block's DCE buffer and the data handler
accesses them from this buffer. In most cases when operating with a data
handler, the EXTERNAL_DCE_BUFFERS should be enabled.

EXTERNAL_DTE_BUFFERS Normally, the DTE data buffers are
created in the DH block along with the other memory elements. This
means that as characters are transferred to/from the modems, they are
placed into and taken from the DH DTE buffer. However, if LRDM is

LRDM Product Manual 11/7/2003

50

built with the UART enabled, memory is allocated in the UART block for
the data and the data would have to be transferred from the UART block
to the DH block. It is far more efficient to have the Data Handler's DTE
receive buffer be the UART's transmit buffer and the DTE transmit buffer
be the UART's receive buffer, eliminating the transfer of data and
decreasing the amount of memory required. To do this, \#define
EXTERNAL_DTE_BUFFERS in the options file. LRDM then creates
only the UART's buffers and maps the Data Handler's buffers into the
UART buffer.

EXTERNAL_UART_CLK is set when the UART clock is derived from
an external source. The default is internal UART clock.

EZBF535 - set when the target is the BF535 Blackfin DSP.

EZ2181 - set when the target is the ADI 2181 EZ-Kit.

EZ2189 - set when the target is the ADI 2189 EZ-Kit.

EZ2191 - set when the target is the ADI 2191 EZ-Kit.

EZ_V22 is defined for the internet downloadable V22 demo program and
has a subset of the capabilities of the modem.

EZ_V32 is defined for the internet downloadable V32 demo program and
has a subset of the capabilities of the modem.

FAKE_NEEDED

FARC_MODE is defined when the FAR memory model calls are used for
function calls from external sources to the modems and NEAR memory
model calls for internal function calls. The default is for near memory
model calls. See also FAR_MODE.

LRDM Product Manual 11/7/2003

51

FAR_MODE is defined when FAR memory model calls are used for all
function calls. The default is for near memory model calls. See also
FARC_MODE.

FAX_DATA_DEMO - symbol to select configuration profile for FAX
bundle (v17, v21, v27, v29, gendet)and data bundle (v22,
v32)demonstration in config.h. This profile sets the buffer sizes and code
module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

FAX_DEMO - symbol to select configuration profile for FAX bundle
(v17, v21, v27, v29, gendet) demonstration in config.h. This profile sets
the buffer sizes and code module enables for the default build, which can
each be over- ridden externally by a command- line symbol definition or
from a *.opt options file.

FEC_COEF_LEN is the number of taps in the far echo canceller. See also
EC_COEF_LEN and NEAR_EC_LEN.

FILE_IO is used when samples are taken from files instead of real time
sample buffers.

FIR_SITE_INTERRUPTS_DISABLED

FOUR_WIRE

FPRINTF_BINS is used in VSIM to printf the goetzel energy bins in
gendet.

FPRINT_VECTORS

FULL_DEMO

FULL_RATE

LRDM Product Manual 11/7/2003

52

FUN_TRACE

GENDET_DEBUG allows analysis() to be called every sample during
debug. Normally, analysis is called after RX_ANALYSIS_LEN samples
have been collected.

GNU is used when there are differences between the GNU user interface
and the windows one. It is applicable mainly to vsim for linux.

GOERTZEL_SAMPLE_RATE is the rate of the Goertzel transform and is
set to 4000 Hz.

GUARD_TONE provides a guard tone for V22.

HARDWARE_UART allows the use of the onboard hardware UART.
The hardware UART and software UARTs are mutually exclusive. If
HARDWAREWARE_UART is defined, SOFTWARE_UART_DISABLE
must also be defined.

HAWK81 - set when the target is the ADI HAWK 2181.

HW_SYSTEM_DELAY is the propagation delay that the modems
compensate for when computing echo delay in the system.

INFO_DET_OVERSAMPLE_RATE is the oversampling rate of the
INFO messages in V34.

INTERNAL_UART_CLK is set when the UART generates internal
clocks. See also EXTERNAL_UART_CLK.

INTERP_DEC_EVAL is test code for a new interpolator and decimator
evaluation.

LRDM Product Manual 11/7/2003

53

INTLEN32 should be deprecated. The length of UINT_MAX in limits.h
should be used instead.

IQ_DAC_WRITE enables the output constellation to be written to DACS
for debugging. This option only applies to boards that have output DAC
capabilities.

IQ_DUMP_WRITE enables the output constellation to be written to the
debug buffer.

ISR_DEBUG

ISR_LOOPBACK loops back the transmit samaples to the receiver for
loopback testing.

KTXNEEDED

L3_MODS

LOG_SAMPLES

LOGSIZE is the size of the V42LOG buffer.

LONG_TIMER is used to get a 32 bit timer resolution.

LOOPBACK

MAX_CHECK

MCBSP0

MCBSP1

MEASURE_RX_MIPS is set to measure the receiver mips.

LRDM Product Manual 11/7/2003

54

MEASURE_TX_MIPS is set to measure the transmitter mips.

MESI_COMMENTS is a variant of MESI_INTERNAL.

MESI_INTERNAL is internal embedded documentation in the code that is
meant to be stripped out before delivery.

MFDTMF_DEMO - symbol to select configuration profile for DTMF and
MF generator/detector demonstration in config.h. This profile sets the
buffer sizes and code module enables for the default build, which can each
be over- ridden externally by a command- line symbol definition or from a
*.opt options file.

MF_API_DEBUG

MF_DEMO - symbol to select configuration profile for MF (R1, R2f,
R2b) generator/ forward detector demonstration in config.h. This profile
sets the buffer sizes and code module enables for the default build, which
can each be over- ridden externally by a command- line symbol definition
or from a *.opt options file.

MF_DETECT

MIC_SPKR

MIPS_MEASURE

MULTICHANNEL_ISR

MULTIPLE_NAMED_CHANNEL_CREATION_TEMPLATE

NEC_COEF_LEN FEC_COEF_LEN is the number of taps in the near
echo canceller. See also EC_COEF_LEN and FAR_EC_LEN.

LRDM Product Manual 11/7/2003

55

NEED_REALTIME is used in the fax relay to signify that the realtime
sample counter is needed in the sequencer.

NORTH_AMERICA_PSTN select NORTH_AMERICAN call progress
detections as the default. The counterpart is CADENCE_CP, which is
used in Europe.

NO_LO_ROTATOR removes the local oscillator phase rotator from the
receiver.

NO_PRINT

NO_TELCO_INTERFACE

NUM_CHANNELS sets the number of channels. This effects the amount
of system memory allocated as well as the number of channels called.
There are three basic configurations to consider:
 One - Used for single channel demo system. ISR supports one codec
channel.
 Two - Used for loopback demos. ISR supports two codec channels.
 More than two - User systems with multi-channel support. No demo
available.

NUM_SAMPLES dicates how many samples are processed each call.
There are two cases of note:
 One sample - data is processed in the ISR
 More than 1 sample - data is processed in SYS_executive loop

NUM_SND_BUFS

ODIN548 - set when the target is the Odin TEXAS INSTRUMENTS
C548 DSP.

ONBOARD_CPC5604_DAA

LRDM Product Manual 11/7/2003

56

ON_CHIP_COEFFICIENTS is used in TEXAS INSTRUMENTS Dsp's to
load the vcoefs data into program memory. This is needed to do efficent
multiply and accumulate (MAC) operations in the dsp. To use this
feature, the coefficients must be located in memory that is overlaid
between program and data. The memory must also have the identical
address. For example, on the TEXAS INSTRUMENTS C54x family,
memory from 0x0000 to 0x7FFF is accessible as both program and data
memory.

OP_POINT is the reference point used for the modem.

OVERLAY_MODE Now, when OVERLAY_MODE=ENABLED, the
OVLY bit is enabled in PMST immediately upon entry to transmitter()
and receiver() and stays in overlaid mode always. If
OVERLAY_MODE=DISABLED then the device will still work if the
"vcoefs" section is in physically overlaid memory area, and the chip was
in overlay mode already. The ON_CHIP_COEFFICIENTS constant is
unchanged, but now it really operates like a PSRAM/DSRAM switch for
the vcoefs section. If ON_CHIP_COEFFICIENTS=ENABLED then the
vcoefs section is assumed to be in DSRAM - not necessarily on-chip
(hence the name is a mis-nomer). If
ON_CHIP_COEFFICIENTS=DISABLED, then vcoefs is assumed to be
in PSRAM and OVERLAY_MODE becomes relevant. However, now
you can set OVERLAY_MODE = DISABLED and
ON_CHIP_COEFFICIENTS = ENABLED, and force the linker to locate
the "vcoefs" section in DSRAM. Assuming that the loader can initialize
DSRAM, then the system will work without any need to alter PMST or to
copy coefficients from PS to DS (xDAIS requirement) (03-14-00).

PAGED_218X_MEM is set when the memory on the ADI 281x target is
paged.

PARALLEL_IO

LRDM Product Manual 11/7/2003

57

PCM3002 is set to indicate that the PCM3002 codec is being used on the
target platform.

PC_SIMULATION is for debugging V.42bis compression. With this
defined, code words are output to STDIO.

PJ_RESONATOR_TYPE

POLL_ENABLED

PSTN_TYPE

RECEIVER is the main define for the receive side of the modems. It is
set in config.h and must be enabled in order to do any receive signal
processing.

REMOTE_DIGITAL_LOOPBACK enable loopback mode for received
data.

RS232_RX_BUFF_SIZE

RTS_CTS_ON_MCBSP is defined for TEXAS INSTRUMENTS DSPs
that has a UART on one of the multi channel buffered serial ports.

RTS_CTS_ON_MCBSP0 is defined for TEXAS INSTRUMENTS DSPs
that has a UART on multi channel buffered serial ports 0.

RTS_CTS_ON_MCBSP1 is defined for TEXAS INSTRUMENTS DSPs
that has a UART on multi channel buffered serial ports 1.

RTS_CTS_ON_MCBSP2 is defined for TEXAS INSTRUMENTS DSPs
that has a UART on multi channel buffered serial ports 2.

LRDM Product Manual 11/7/2003

58

RTS_CTS_ON_XF_BIO is defined in the Request to Send and Clear to
Send functionality is provided on the XF pin. This is applicable only to
Texas Instruments DSPs.

RXTX_DEMO - symbol to select configuration profile for basic reciever/
transmitter (silence and idle) demonstration in config.h. This profile sets
the buffer sizes and code module enables for the default build, which can
each be over- ridden externally by a command- line symbol definition or
from a *.opt options file.

RX_BLOCK_LEN is the length of the receive structure. The size of the
receive block depends on which components of the receiver are enabled.

RX_BLOCK_NUM_CHANNELS is the number of channels of receiver
blocks the system can support.

RX_DATA_LEN is the length of the Rx_DCE[]buffer in symbols.

RX_DATA_NUM_CHANNELS is the number of channels of receive
data that are support.

RX_DTMF enable DTMF detection (override config.inc)

RX_FIR_LEN is the size of the receive finite impulse filter. It is set in
config.h, but for most applications is 128.

RX_FIR_NUM_CHANNELS is the number of channels of receive fir
data.

Rx_FRAMESIZE is the size of the largest frame that can be sent from the
Responder to the Initiator. This parameter is negotiated during V.42 XID.
The default value is 128.

LRDM Product Manual 11/7/2003

59

RX_FSK_MODEM is set in config.h to enable to fsk modem
demodulation.

RX_MF is set in config.h to enable MF detection.

RX_NUM_CHANNELS is the number of receive channels in the system.

RX_NUM_SAMPLES is the number of samples that are processed at a
time. The receiver waits until RX_NUM_SAMPLES are available in the
sample buffer and then processes them. If receiver is called with less than
RX_NUM_SAMPLES of data, it simply returns 0.

RX_SAMPLE_LEN is the length of the receive sample buffer. It is
normally set in target.h as part of one of the DEMO configurations but can
be manually set to any length. The minimum size is the larger of
2*NUM_SAMPLE+1 or NUM_SAMPLES+81.

RX_SAMPLE_NUM_CHANNELS

RX_DATA_LEN is the size of the receive symbol buffer (DCE). There
must be enough symbols in the symbol buffer that correspond to
NUM_SAMPLES of time, plus 1. For example, if NUM_SAMPLES is
80 (10 ms) and the baud rate is 2400, then there must be 2400*0.10 + 1=
25 symbols. If a fractional number results, it must be rounded up.

RX_UART_LEN is the length of the UART structure.

SCOPETRACES allocated memory for the windows version of vsim for
the scopetraces. Two things must happen for a trace to be visible in
windows. The first is that the bitfield in SCOPETRACES must be set.
The second is that the particular function must be enabled at run time.
The SCOPETRACES define builds the capabilities and the runtime option
then selects it.

SERIAL_PORT_LOOPBACK

LRDM Product Manual 11/7/2003

60

SHOW_GLOBAL

SI303X

SI3044

SILABS_30XXEVB_DAA

SIM_2191_WORKAROUND

SOFTWARE_UART_DISABLE disables the software UART (where
applicable). Some DSP boards have both a hardware UART and a
software UART. Only one UART can be enabled. If
HARDWARE_UART is enabled, the SOFTWARE_UART_DISABLE
must also be defined.

SPEED is a generic define chooses the faster alternative where size or
speed can be gained at the expense of the other.

SPORT_DEFINED

SQUARE_ROOT_WHAT enables the computation and processing of the
estimated signal point W - hat.

STAND_ALONE

START_PTRS_NUM_CHANNELS is the number of start pointer
structures in the system.

STDIO is define in the modem sources to write debug data to the STDIO.

STU_III_DEMO - symbol to select configuration profile for
demonstration STU III (v26, v32, gendet) in config.h. This profile sets the
buffer sizes and code module enables for the default build, which can each

LRDM Product Manual 11/7/2003

61

be over- ridden externally by a command- line symbol definition or from a
*.opt options file.

SUPPRESS_V22A_ANS disable answer tone

SUPPRESS_V22A_SILENCE disable answer mode silence prior
transmitting answer tone. The silece period is typically used by the local
telephone companies for transmitting billing information and is required
for use on PSTN's.

TDK_DAUGHTER_CARD is defined when the codec on a TDK daughter
card.

TESTBED is a build mode that generates a testbed V.32 debug platform.

TIGER5410 is defined when the target is a TEXAS INSTRUMENTS
Tiger C5410 DSP.

TIGER542 is defined when the target is a TEXAS INSTRUMENTS Tiger
C542 DSP.

TIGER549 is defined when the target is a TEXAS INSTRUMENTS Tiger
C549 DSP.

TIGER54X is defined when the target is a TEXAS INSTRUMENTS
Tiger C54x DSP.

TIMER_CONTROL_EVALUATION

TLC32AD50

TMP00

TONE_DEMO - symbol to select configuration profile for programmable
tone generator and power measurement demonstration in config.h. This

LRDM Product Manual 11/7/2003

62

profile sets the buffer sizes and code module enables for the default build,
which can each be over- ridden externally by a command- line symbol
definition or from a *.opt options file.

TRACEBACK_LEN is the lookback size for the trellis decoder.

TRACEBACK_NUM_CHANNELS is the number of trellis decoder
structures.

TRAIN_LOOPS_COARSE_TIMING_EVAL is eval code for training
loops.

TRANSMITTER is the main define for the transmitter side of the
modems. It is set in config.h and must be enabled in order to do any
transmit signal generation.

TXD_RXD_ON_MCBSP is defined for TEXAS INSTRUMENTS DSPs
that has a UART on one of the multi channel buffered serial ports.

TXD_RXD_ON_MCBSP0 is defined for TEXAS INSTRUMENTS DSPs
that has a UART on multi channel buffered serial ports 0.

TXD_RXD_ON_MCBSP1 is defined for TEXAS INSTRUMENTS
DSPs that has a UART on multi channel buffered serial ports 1.

TXD_RXD_ON_MCBSP2 is defined for TEXAS INSTRUMENTS DSPs
that has a UART on multi channel buffered serial ports 2.

TX_DATA_LEN is the size of the transmit symbol buffer (DCE). There
must be enough symbols in the symbol buffer that correspond to
2*NUM_SAMPLES of time, plus 1. For example, if NUM_SAMPLES is
80 (10 ms) and the baud rate is 2400, then there must be 2*2400*0.10 +
1= 49 symbols.

LRDM Product Manual 11/7/2003

63

TX_DATA_NUM_CHANNELS is the number of channels of transmit
dce buffers in the system.

TX_FIR_LEN is the length of the transmit fir filter, nominally 12.

TX_FIR_NUM_CHANNELS is the number of transmit fir channels in the
system.

Tx_FRAMESIZE is the size of the largest frame that can be sent from the
Initiator to the Responder. This parameter is negotiated during V.42 XID.
The default value is 128.

TX_GAIN_RESCALING

TX_MODEM_LEN

TX_NUM_CHANNELS
TX_NUM_SAMPLES is the number of samples generated at a time in the
transmitter. The transmit algorithm wait the number of samples in the
transmit buffer is less than or equal to TX_SUM_SAMPLES and then
calls the transmit routines.

TX_SAMPLE_LEN is the length of the transmit sample buffer. It is
normally set in target.h as part of one of the DEMO configurations but can
be manually set to any length. The size must at least
2*NUM_SAMPLE+1.

TX_SAMPLE_NUM_CHANNELS is the number of channels of
transmitters in the system.

TX_UART_LEN is the size of the transmit UART structure.

UART_ASSEMBLY is defined when the UART is entirely in assembly.

LRDM Product Manual 11/7/2003

64

UART_BAUD_RATE control the UART baud rate. Supported rates are
19,200 and 115,200 baud.

UART_BAUD_RATE115200 is defined when the baud rate is 115,200.

UART_BAUD_RATE19200 is defined when the baud rate is 19,200.

UART_CLK_100MHZ is defined on TEXAS INSTRUMENTS DSPs
when the UART clock is 100 MHz. See also UART_CLK_92MHz.

UART_CLK_92MHZ is defined on TEXAS INSTRUMENTS DSPs
when the UART clock is 92 MHz. See also UART_CLK_100MHz.

UART_CLK_DIVIDER

UART_CSRC_ISR is defined when the UART is in C. See also
UART_ASSEMBLY.

UART_DISABLE is set when there is no UART. The UART is required
if the AT Handler is enabled.

UART_NUM_CHANNELS is the number of UART channels in the
system. Nominally, one UART channel is supported in the system.

ULAW_COMPANDING

UMD_TRETTER_PRECODER uses the Univeristy of Maryland's V.34
Precoder.

USE_BF is defined in the fax relay to use bit field in structures to
conserve space.

USE_SEQ_NR is defined the fax relay to insert sequence numbers into the
data packets.

LRDM Product Manual 11/7/2003

65

V14_DISABLE disables the V.14 data handler. See ???? for the operation
of the data handler.

V14_DISABLED

V21_DEMO - symbol to select configuration profile for v.21 modem
demonstration in config.h. This profile sets the buffer sizes and code
module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V22_DEMO - symbol to select configuration profile for v.22 modem
demonstration in config.h. This profile sets the buffer sizes and code
module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V22_DISABLE disables V.22 modems. If V.22 is disabled, an originate
call will not generate the scrambled binary ones sequence for a V.22 call.
The fallback origiate response behavior will depend on the status of
BELL103_DISABLE. In answer mode, the system will generate ????? if
Bell 103 is enabled, and will not do anything if Bell 103 is disabled.

V22_DISABLED

V22_ENABLE

V22_FAST decreases the training time for V22. TXA_SILENCE1_LEN
decrease to 12.5 ms from 2.15 sec, TXC_SILENCE1_LEN decrease to
12.5 ms from 611 ms, TXA_ANSWER_TON_LEN decreases to 12.5 ms
from 3.3 sec.

V23_DEMO - symbol to select configuration profile for v.23 modem
demonstration in config.h. This profile sets the buffer sizes and code

LRDM Product Manual 11/7/2003

66

module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V26_DEMO - symbol to select configuration profile for v.26 modem
demonstration in config.h. This profile sets the buffer sizes and code
module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V27_DISABLE

V29_DEBUG set Terminal_count to 0 in Tx_init_v29().

V29_DEMO - symbol to select configuration profile for v.29 modem
demonstration in config.h. This profile sets the buffer sizes and code
module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V29_DISABLE

V32_DEMO - symbol to select configuration profile for v.32 modem
demonstration in config.h. This profile sets the buffer sizes and code
module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V32_DISABLE disables V.32 modems. If V.32 is disabled, an originate
call will not generate the AA sequence for a V.32 call. The origiate
fallback response behavior will depend on the status of V22_DISABLE
and BELL103_DISABLE. In answer mode, the system will ignore the
AA sequence.

LRDM Product Manual 11/7/2003

67

V32_FAST decreases the training time for V32. TXA_SILENCE1_LEN
decrease to 0 from 1.8 sec, TXC_SILENCE1_LEN decrease to 0 from 300
ms, TXA_ANSWER_TON_LEN decreases to 100ms from 3.3 sec. All
Tx traininging lengths are 1280 symbols and the threshold for EC
convergence is decreased.

V32_NO_TCM forces the rate to 9600 unless the rate is 4800.

V32_STU_III

V34TCM defines the level of the trellis decoder for the V.34 modem. See
V34TCM16, V34TCM32, and V34TCM64.

V34TCM16 defines the 16 state V.34 trellis decoder. The V.34 will only
support the 16 state encoder and decoder.

V34TCM32 defines the 32 state V.34 trellis decoder. The V.34 will
support 32 and 16 state encoders and decoders.

V34TCM64 defines the 64 state V.34 trellis decoder. The V.34 will
support all three encoder and decoders.

V34_16STATE_TCM

V34_SR2400 is defined when there is support for 2400 baud in V.34

V34_SR2743 is defined when there is support for 2743 baud in V.34

V34_SR2800 is defined when there is support for 2800 baud in V.34

V34_SR3200 is defined when there is support for 3200 baud in V.34

V34_32STATE_TCM

V34_SR3429 is defined when there is support for 3429 baud in V.34

LRDM Product Manual 11/7/2003

68

V34_64STATE_TCM

V34_COMMON_INTERP is defined to use an alternate interpolation
filter in V.34 that replace the standard one in common.c.

V34_DEMO - symbol to select configuration profile for v.34 modem
canceller demonstration in config.h. This profile sets the buffer sizes and
code module enables for the default build, which can each be over- ridden
externally by a command- line symbol definition or from a *.opt options
file.

V34_DEMO2 - symbol to select configuration profile for v.34, 2 channel
modem canceller demonstration in config.h. This profile sets the buffer
sizes and code module enables for the default build, which can each be
over- ridden externally by a command- line symbol definition or from a
*.opt options file.

V34_EQ_LEN is the length of the V.34 equalizer. The default is 63.

V34_FAST decrease the training times for V.34.

V42BIS enables V.42bis data compression. This parameter is negotiated
during V.42 negotiation. V.42 must be enabled to run V.42bis. Both
sides of the connection must support V.42 and V.42bis in order to run
in compressed mode.

V42BIS_COMPACT packs the codeword entries to minimize the size of
the table at the expense of speed. This can be enabled if
B42_MAX_CODEWORD is less than 2048. For operation where ram is
limited, this reduces the table size by B42_MAX_CODEWORD.

V42BIS_DISABLE disables V.42 bis. If V.42 bis is disabled, the V.42
options are disregarded. See V42BIS, V42BIS_COMPACT,

LRDM Product Manual 11/7/2003

69

B42MAXCODEWORD. Defining also inhibits V.42 bis during V.42
negotiations.

V42BIS_MAX_CODEWORD

V42BIS_MAX_STRING

V42DEBUG

V42LOG is a debugging tools that captures the V.42 Frames and state
transitions in a V.42 session.
V42TRACE
V42_DISABLE disables V.42 hdlc framing. There are three data modes
supported by the LRDM: V.42, V.14, and no framing.

V42BIS enables V.42bis data compression. This parameter is negotiated
during V.42 negotiation. V.42 must be enabled to run V.42bis. Both
sides of the connection must support V.42 and V.42bis in order to run in
compressed mode.

V42BIS_DISABLE disables V.42 bis. If V.42 bis is disabled, the V.42
options are disregarded. See V42BIS, V42BIS_COMPACT,
B42MAXCODEWORD. Defining also inhibits V.42 bis during V.42
negotiations.

V42BIS_COMPACT packs the codeword entries to minimize the size of
the table at the expense of speed. This can be enabled if
B42_MAX_CODEWORD is less than 2048. For operation where ram is
limited, this reduces the table size by B42_MAX_CODEWORD.

V42_MIPS_MEASURE is defined to measure the mips required for V.42.

V8_DEBUG changes the training lengths and silence periods for
debugging V.8.

LRDM Product Manual 11/7/2003

70

VCOEF_IN_PROGRAM_MEMORY is set when the coefficients are
placed in program memory.

VERBOSE_CHARS

VITERBI_TEST_OUTPUT is defined in V.34 to get the raw symbols
from the decoder and write them to file to facilitate the V.34 trellis
decoder debugging.

VMODEM_DEMO - symbol to select configuration profile for reduced
feature v27/ tone canceller demonstration in config.h. This profile sets the
buffer sizes and code module enables for the default build, which can each
be over- ridden externally by a command- line symbol definition or from a
*.opt options file.

VOCODER_ENABLED

VSIM is defined to enable VSIM specific sections of code and screen
graphics.

VSIM_DEMO - symbol to select configuration profile for VSIM
simulation canceller demonstration in config.h. This profile sets the
buffer sizes and code module enables for the default build, which can each
be over- ridden externally by a command- line symbol definition or from a
*.opt options file.

WAIT_DIALTONE_DISABLE disable waiting for dialtone prior to
dialing.

WHAT_NR_ROOTER_SCALE is the scale factor for V.34 NR rooter.

WINDOWS is defined for windows specific graphic code.

XDAIS_API define that Texas Instruments DAIS api.

	1
	1	INTRODUCTION	3
	Getting Started
	Pre-built executable
	Building LRDM

	Configurations
	Sample Processing
	Sample by Sample
	Block Processing Samples

	Multiple Channel LRDM
	Single Channel
	Multi Channel

	Data Flow, Buffers and Pointers
	Transmitter
	Receivers

	LRDM Components
	AT Command Handler
	Command Mode
	Online Mode

	Command Handler
	Response Handler
	Suppressing ACK Responses
	Sequencer
	User Function
	Data Handler
	Modems
	UART

	Building Blocks
	LRDM_ptrs
	Rx Block
	Tx Block
	DH Block
	Uart Block
	AT Block
	User Block
	Sequencer Block
	Command Block
	Response Block

	Accessing LRDM Memory
	Circular buffers
	Example code

	Symbol Definitions (#Defines)
	LRDM System Defines
	Data Pump defines

